МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ
Учреждение образования
"Гомельский государственный университет
имени Франциска Скорины"
Математический факультет
Кафедра алгебры и геометрии
Курсовая работа
АЛГЕБРАИЧЕСКИЕ ГРУППЫ МАТРИЦ
Исполнитель:
студентка группы H.01.01.01 М-42
Мариненко В.В.
Научный руководитель:
доктор физико-математических наук,
профессор Скиба С.В.
Гомель 2003
Содержание
Введение
1. Алгебраические группы матриц
1.1 Примеры алгебраических групп матриц
1.2 О полугруппах
1.3 Компоненты алгебраической группы
1.4 О
-группах
2 Ранг матрицы
2.1 Возвращение к уравнениям
2.2 Ранг матрицы
2.3 Критерий совместности
3 Линейные отображения. Действия с матрицами
3.1 Матрицы и отображения
3.2 Произведение матриц
3.3 Квадратные матрицы
Заключение
Список использованных источников
Введение
Множество матриц -ой степени над будем рассматривать как аффинное пространство с имеющейся на ней полиномиальной топологией. Алгебраические группы матриц
определяются как невырожденные части алгебраических множеств из , являющиеся группами относительно обычного матричного умножения. Простейший пример такой группы - общая линейная группа . В настоящем параграфе мы начнем систематическое изучение алгебраических матричных групп.
Все топологические понятия относятся к полиномиальной топологии; черта обозначает замыкание в , диез - замыкание в , бемоль - взятие невырожденной части, т. е. - совокупность всех невырожденных матриц из . Иногда, допуская вольность, мы употребляем для групп те же понятия, что и для подлежащих алгебраических множеств, - например, говорим об общих точках групп; это не должно вызывать недоразумений.
1. Алгебраические группы матриц
1.1 Примеры алгебраических групп матриц
Классические матричные группы - общая, специальная, симплектическая и ортогональная
:
где
- единичная матрица и штрих обозначает транспонирование.
Диагональная группа
, группы клеточно-диагональных матриц данного вида. Треугольная группа
(для определенности --- с нижним нулевым углом), унитреугольная группа (треугольные матрицы с единичной диагональю), группы клеточно-треугольных матриц данного вида.
Централизатор произвольного множества из в алгебраической группе , нормализатор замкнутого множества из в .
Пересечение всех алгебраических групп, содержащих данное множество матриц из --- алгебраическая группа. Она обозначается и называется алгебраической группой, порожденной множеством
.
Каждую алгебраическую линейную группу из можно изоморфно --- в смысле умножения и полиномиальной топологии --- отождествить с замкнутой подгруппой из в силу формулы
Такое отождествление позволяет при желании ограничиться рассмотрением только таких групп матриц, которые сами являются алгебраическими множествами (а не их невырожденными частями). Это дает другое оправдание тем вольностям в терминологии, которые упоминались в начале параграфа.
Множество всех матриц из , оставляющих инвариантной заданную невырожденную билинейную форму на .
Пусть --- алгебра над конечной размерности (безразлично, ассоциативная или нет), --- группа всех ее автоморфизмов. Фиксируя в какую-нибудь базу и сопоставляя автоморфизмам алгебры их матрицы в этой базе, мы получим на строение алгебраической группы. Действительно, пусть
т. е. --- структурные константы алгебры . Пусть далее
где . Тогда задается в матричных координатах очевидными полиномиальными уравнениями, вытекающими из соотношений
Указать в приведенных выше примерах определяющие уравнения, найти общую точку, если она есть.
В дальнейшем нам встретится еще много примеров и конструкций алгебраических матричных групп.
1.1.1
Если матричная группа содержит алгебраическую подгруппу конечного индекса, то сама алгебраическая.
Доказательство. Пусть - аннулятор группы в , - его корень в . Надо показать, что . Пусть, напротив, . Пусть - смежные классы по . Для каждого выберем многочлен
и положим
Очевидно, , . Получили противоречие.
Пусть --- алгебраическая группа, , --- подмножество и замкнутое подмножество из . Тогда множества
где , замкнуты. Если тоже замкнуто и --- общее поле квазиопределения для , , , то , , квазиопределены над . В частности, если существует хотя бы одно с условием (соответственно, , ), то можно считать, что (см. 7.1.5).
Если на множестве выполняется теоретико-групповое тождество , то оно выполняется и на его замыкании . В частности, коммутативность, разрешимость, нильпотентность матричной группы сохраняются на ее замыкании в полиномиальной топологии.
Определим действие элементов из на рациональные функции из , , полагая
Для каждого отображение (сдвиг аргумента) есть автоморфизм поля . Отображение есть изоморфизм полной линейной группы в группу автоморфизмов расширения .
Имеет место следующее предложение.
1.2.1
Все замкнутые (в полиномиальной топологии) полугруппы из являются группами. Более общно: замыкание произвольной полугруппы --- группа. Более точно: если --- аннулятор в , то совпадает с
Здесь вместо можно написать .
Доказательство. Во-первых, и, значит, . Действительно, если , и , то , т. е. . Подпространство многочленов из степени отображается оператором на себя, так как оно конечномерно, а опрератор обратим. Но тогда и всё отображается на себя, как объединение всех .
Во-вторых, , т. е. для каждого . Действительно, пусть . По уже доказанному, . Найдём с условием . Тогда .
В-третьих, , т. е. для всех , . Действительно, . Предложение доказано.
Таким образом, теория алгебраических полугрупп из исчерпывается теорией алгебраических групп.
Отметим ещё одно полезное предложение.
1.2.2
Пусть алгебраическая группа неприводима, т. е. --- многообразие, --- густое подмножество, плотное в . Тогда каждый элемент является произведением двух элементов из ; в частности, если --- подгруппа, то она совпадает с .
Доказательство. Множества и тоже густые и плотные, поэтому пересечение непусто (см. п. 8.2).
Если --- полугруппа из , то .
Пусть --- алгебраическая группа матриц. Невырожденные части компонент её подлежащего многообразия называеются компонентами
группы . наличие в групповой структуры позволяет высказать о компонентах ряд важных утверждений, отсутствующих в случае произвольного многообразия.
1.3.1
Теорема. Пусть --- алгебраическая группа матриц. Её компонента , содержащая единицу, единственна и является нормальной подгруппой. Остальные компоненты --- смежные классы по (в частности, они являются связными компонентами группы в полиномиальной топологии). --- единственная связная замкнутая подгруппа конечного индекса в . Аннулятор компоненты связан с аннулятором всей группы следующим образом:
для
некоторого , зависящего от
, где --- аннулятор единицы в , --- некоторый многочлен из .
Доказательство. а) Пусть --- общее поле определения всех компонент группы . Пусть , содержат единицу , , --- их независимые общие точки над и , . Имеем специализации
над , откуда , , . Этим доказана единственность компоненты .
б) Очевидно, что отображения
являются гомеоморфизмами пространства . Так как инвариантна относительно них, то --- нормальная подгруппа группы .
в) Пусть . Тогда при фиксированном --- снова все компоненты группы . В частности, , . Этим доказано, что --- смежные классы по и, значит, связные компоненты группы .
г) Если --- связная замкнутая подгруппа группы , то, предыдущему, . Если, кроме того, конечного индекса, то она той же размерности, что и , потому совпадает с .
д) Для каждого возьмем многочлен
Пусть --- точка из , в которой . Рассмотрим многочлен
Он искомый. В самом деле, очевидно, . Оба включения справа налево очевидны (использовать простоту идеала ). Остается доказать включение
Пусть , . Имеем:
Если , то , если же , , то . В любом случае . Следовательно, . Теорема доказана.
Мы видим, в частности, что для алгебраической группы неприводимость и связность в полиномиальной топологии --- одно и то же; в дальнейшем мы будем пользоваться только вторым термином, чтобы избежать путаницы с понятием матричной приводимости групп (к полураспавшейся форме).
Доказать, что связанная компонента единицы алгебраической группы содержится в любой замкнутой подгруппе конечного индекса.
Подгруппа алгебраической группы тогда и только тогда замкнута, когда замкнуто её пересечение со связной компонентой единицы .
<<Только тогда>> очевидно. <<Тогда>> вытекает из 9.1.9, если заметить, что
Конечная нормальная подгруппа связной алгебраической группы всегда лежит в центре .
В заключение отметим, что если в качестве универсальной области выбрано поле комплексных чисел , то в алгебраической группе можно рассматривать две топологии --- полиномиальную и евклидову. Ясно, что вторая тоньше первой, поэтому, в частности, евклидова связная компонента единицы содержится в полиномиальной связной компоненте. Можно было бы доказать и обратное, т. е. на самом деле связные компоненты комплексной алгебраической группы в обеих топологиях одни и те же. Этот результат становится неверным, если рассматривать -порцию комплексной алгебраической группы (по поводу определения см. следующий пункт).
Пусть - поле. По определению, алгебраическая -группа
--- это группа матриц из , выделяемая полиномиальными уравнениями с коэффициентами в . Иначе можно сказать, что это -порция, т. е. пересечение с , некоторой алгебраической группы, квазиопределенной над . Обычные алгебраические группы тоже можно трактовать как -группы по отношению к некоторой большей универсальной области . В этом смысле понятие алгебраической -группы является более общим, так как от не требуется ни алгебраической замкнутости, ни бесконечной степени трансцендентности над простым полем.
В свойствах алгебраических групп и -групп много общего. Имеется сандартный способ перехода от первых ко вторым --- посредством поля определения (в чём и состоит основное значение этого понятия). Нам не раз представится возможность продемонстрировать этот способ. В целом же -группы в нашем изложении останутся на заднем плане, лишь иногда выходя на авансцену.
Многие результаты о -группах по формулировке и доказательству вполне аналогичны результатам об абсолютных алгебраических группах (в ) и опираются на сведения из алгебраической геометрии для -множеств, (по определению, алгебраическое -множество
выделяется в уравнениями с коэффициентами из ).
2 Ранг матрицы
В арифметическом линейном пространстве столбцов высоты рассмотрим векторов
и их линейную оболочку . Пусть дан еще один вектор . Спрашивается, принадлежит ли подпространству , а если принадлежит, то каким образом его координаты выражаются через координаты векторов . В случае вторая часть вопроса относится к значениям координат вектора в базисе . Мы берем линейную комбинацию векторов с произвольными коэффициентами и составляем уравнение . Наглядный вид этого уравнения
есть лишь иная запись системы из линейных уравнений с неизвестными:
Первое впечатление таково, что мы вернулись к исходным позициям, потеряв время и ничего не выиграв. На самом же деле мы располагаем теперь рядом важных понятий. Осталось приобрести навыки в обращении с ними.
В этом месте удобно условиться в обозначениях. В дальнейшем для сокращения записи мы часто будем обозначать сумму значком . При этом --- величины произвольной природы (числа, векторы-строки и т. д.), для которых выполнены все законы сложения чисел или векторов. Правила
достаточно понятны, чтобы их нужно было разъяснять. Будут рассматриваться также двойные суммы
,
в которых порядок суммирования (по первому и по второму индексу) можно выбирать по своему желанию. Это легко понять, если расположить величины в прямоугольную матрицу размера : в нашей воле начинать суммирование элементов матрицы по строкам или по столбцам.
Другие возможные типы суммирования будут разъясняться в нужном месте.
Назовем пространством столбцов
прямоугольной матрицы размера введенное выше пространство , которое мы будем обозначать теперь символом или просто (в --- вертикальный). Его размерность назовем рангом по столбцам матрицы . Аналогично вводится ранг по строкам матрицы : , где --- подпространство в , натянутое на векторы-строки , (г --- горизонтальный). Другими словами,
- ранги систем векторов-столбцов и соответственно векторов-строк. По теореме о существовании конечного базиса у подпространства величины и определены правильно.
Будем говорить, что матрица получена из при помощи элементарного преобразования типа
(I), если для какой-то пары индексов и для . Если же для всех и , , то говорим, что к применено элементарное преобразование типа
(II).
Заметим, что элементарные преобразования обоих типов обратимы, т. е. матрица , получающаяся из при помощи одного элементарного преобразования, переходит снова в путем применения одного элементарного преобразования, причем того же типа.
2.2.1
Лемма. Если матрица получена из прямоугольной матрицы путем применения конечной последовательности элементарных преобразований, то имеют место равенства:
(i)
(ii)
Доказательство. Достаточно рассмотреть тот случай, когда получена из путем применения одного элементарного преобразования (сокращенно э. п.).
(i) Так как, очевидно, , то э. п. типа (I) не меняет . Далее, и, следовательно, , так что не меняется и при э. п. типа (II).
(ii) Пусть --- столбцы матрицы . Нам нужно доказать, что
Тогда всякой, в том числе и максимальной, независимой системе столбцов одной матрицы будет отвечать независимая система столбцов с теми же номерами другой матрицы, чем и устанавливается равенство . Заметим еще, что в силу обратимости элементарных преобразований достаточно доказать импликацию в одну сторону. Пусть, например, . Тогда, заменяя в (1) на и все на 0, мы видим, что --- решение однородной системы ОС, ассоциированной с линейной системой (2). По соответствующей теореме это решение будет также решением однородной системы , получающейся из ОС при помощи э. п. типа (I) или (II) и имеющей своей матрицей как раз матрицу . Так как система кратко записывается в виде , то мы приходим к соотношению
Основным результатом этого параграфа является следующее утверждение:
2.2.2
Теорема. Для любой прямоугольной -матрицы справедливо равенство (это число называется просто рангом матрицы и обозначается символом ).
Доказательство. Т. к. конечным числом элементарных преобразований, совершаемых над строками , матрицу можно привести к ступенчатому виду:
с . Согласно лемме так что нам достаточно доказать равенство .
Столбцы матриц и с номерами , отвечающими главным неизвестным линейной системы (2), будем называть базисными столбцами. Эта терминология вполне оправдана. Предположив наличие соотношения
связывающего векторы-столбцы , , матрицы (3), получим последовательно: , , , , , а так как , то . Значит, и . Но пространство , порожденное столбцами матрицы , отождествляется с пространством столбцов матрицы, которая получается из удалением последних нулевых строк. Поэтому . Сопоставление двух неравенств показывает, что (неравенство вытекает также из того очевидного соображения, что все столбцы матрицы являются линейными комбинациями базисных; проделайте это самостоятельно в качестве упражнения).
С другой стороны, все ненулевые строки матрицы линейно независимы: любое гипотетическое соотношение
как и в случае со столбцами, дает последовательно , , , . Откуда . Стало быть,
Ступенчатый вид матрицы , дающий ответ на ряд вопросов относительно линейных систем, содержит элементы произвола, связанные, например, с выбором базисных столбцов или, что эквивалентно, с выбором главных неизвестных системы (2). В то же время из теоремы 1 и из ее доказательства извлекается
Следствие. Число главных неизвестных, линейной системы (2) не зависит от способа приведения ее к ступенчатому виду и равно , где --- матрица системы.
Действительно, мы видели, что число главных неизвестных равно числу ненулевых строк матрицы (см. (3)), совпадающему, как мы видели, с рангом матрицы . Ранг определялся нами совершенно инвариантным образом. Этими словами выражается тот факт, что ранг матрицы служит ее внутренней характеристикой, не зависящей от каких-либо привходящих обстоятельств.
В следующей главе мы получим эффективное средство для вычисления ранга матрицы , устраняющее необходимость приведения к ступенчатому виду. Это, несомненно, повысит ценность утверждений, основанных на понятии ранга. В качестве простого, но полезного примера сформулируем критерий разрешимости линейной системы.
2.3.3
Теорема. (Кронекер - Капелли) Система линейных уравнений (2) совместна тогда и только тогда, когда ранг ее матрицы совпадает с рангом расширенной матрицы
Доказательство. Совместность линейной системы (2), записанной в виде (1), можно трактовать как вопрос о представлении вектора-столбца свободных членов в виде линейной комбинации векторов-столбцов матрицы . Если такое представление возможно (т. е. система (2) совместна), то и , откуда (см. формулировку теоремы 1).
Обратно, если ранги матриц и совпадают и --- какая-то максимальная линейно независимая система базисных столбцов матрицы , то расширенная система будет линейно зависимой, а это означает, что --- линейная комбинация базисных (и тем более всех) столбцов . Стало быть, система (2) совместна.
3. Линейные отображения. Действия с матрицами
Пусть и --- арифметические линейные пространства столбцов высоты и соответственно. Пусть, далее, --- матрица размера . Определим отображение , полагая для любого
где --- столбцы матрицы . Так как они имеют высоту , то в правой части (1) стоит вектор-столбец . Более подробно (1) переписывается в виде
Если ,
то .
Аналогично .
Обратно, предположим, что --- отображение множеств, обладающее следующими двумя свойствами:
(i) для всех
;
(ii) для всех
.
Тогда, обозначив стандартные базисные столбцы пространств и соответственно символами и , мы воспользуемся свойствами (i), (ii) в применении к произвольному вектору
:
Соотношение (2) показывает, что отображение полностью определяется своими значениями на базисных векторах-столбцах. Положив
мы обнаруживаем, что задание равносильно заданию прямоугольной матрицы размера со столбцами , а соотношения (1) и (2) фактически совпадают. Стало быть, можно положить .
3.1.1 . Определение. Отображение , обладающее свойствами (i), (ii), называется линейным отображением
из в . Часто, в особенности при , говорят о линейном преобразовании
. Матрица называется матрицей линейного отображения
.
Пусть , --- два линейных отображения с матрицами и . Тогда равенство равносильно совпадению значений для всех . В частности, , откуда и .
Резюмируем наши результаты:
3.1.2
Теорема. Между линейными отображениями в и матрицами размера существует взаимно однозначное соответствие.
Следует подчеркнуть, что бессмысленно говорить о линейных отображениях произвольных множеств и . Условия (i), (ii) предполагают, что и --- подпространства арифметических линейных пространств , .
Обратим внимание на специальный случай , когда линейное отображение , обычно называемое линейной функцией
от переменных, задается скалярами :
Линейные функции (4), равно как и произвольные линейные отображения при фиксированных и можно складывать и умножать на скаляры. В самом деле, пусть --- два линейных отображения. Отображение
определяется своими значениями:
В правой части стоит обычная линейная комбинация векторов-столбцов.
Так как
то - линейное отображение. По теореме 1 можно говорить о его матрице . Чтобы найти , выпишем, следуя (3), столбец с номером :
Матрицу с элементами естественно назвать линейной комбинацией матриц и с коэффициентами и :
Итак, .
Особенно часто нами будет использоваться тот факт, что линейные комбинации линейных функций снова являются линейными функциями.
Соотношения (5) и (6) выражают согласованность действий сложения и умножения на скаляры в множествах матриц размера и отображений . В случае произвольных множеств имеется еще важное понятие произведения (композиции) отображений. Разумно ожидать, что композиция двух линейных отображений должна выражаться неким согласованным образом в терминах матриц. Посмотрим как это делается.
Пусть , --- линейные отображения, --- их композиция.
Вообще говоря, нам следовало бы предварительно проверить, что --- линейное отображение, но это довольно ясно:
(i) ;
(ii) ;
поэтому по теореме 1 с ассоциируется вполне определенная матрица .
Действие отображений на столбцы в цепочке запишем в явном виде по формуле ():
С другой стороны,
Сравнивая полученные выражения и памятуя о том, что --- произвольные вещественные числа, мы приходим к соотношениям
Будем говорить, что матрица получается в результате умножения
матрицы на матрицу . Принято писать . Таким образом, произведением прямоугольной матрицы размера и прямоугольной матрицы размера называется прямоугольная матрица размера с элементами , задающимися соотношением (7). Нами доказана
3.2.1
Теорема. Произведение двух линейных отображений с матрицами и является линейным отображением с матрицей . Другими словами,
Соотношение (8) - естественное дополнение к соотношению (6).
Мы можем забыть о линейных отображениях и находить произведение двух произвольных матриц , , имея в виду, однако, что символ имеет смысл только в том случае, когда число столбцов в матрице совпадает с числом строк в матрице
. Именно при этом условии работает правило (7) "умножения -й строки на -й столбец ", согласно которому
Число строк, матрицы равно числу строк матрицы , а число столбцов --- числу столбцов матрицы .
В частности, произведение квадратных матриц одинаковых порядков всегда определено, но даже в этом случае, вообще говоря, , как показывает хотя бы следующий пример:
Умножение матриц, конечно, можно было бы вводить многими другими способами (умножать, например, строки на строки), но ни один из этих способов не сравним по важности с рассмотренным выше. Это и понятно, поскольку мы пришли к нему при изучении естественной композиции (суперпозиции) отображений, а само понятие отображения относится к числу наиболее фундаментальных в математике.
Следствие. Умножение матриц ассоциативно:
Действительно, произведение матриц соответствует произведению линейных отображений (теорема 2 и соотношение (8)), а произведение любых отображений ассоциативно. К тому же результату можно прийти вычислительным путем, используя непосредственно соотношение (7).
Пусть (или ) --- множество всех квадратных матриц () порядка с вещественными коэффициентами ,
Единичному преобразованию , переводящему каждый столбец в себя, соответствует, очевидно, единичная матрица
Можно записать , где
- символ Кронекера
. Правило (7) умножения матриц, в котором следует заменить на , показывает, что справедливы соотношения
Матричные соотношения (10), полученные вычислительным путем, вытекают, конечно, из соотношений для произвольного отображения , если воспользоваться теоремой 1 и равенством (8) с .
Как мы знаем (см. (5)), матрицы из можно умножать на числа, понимая под , где , матрицу .
Но умножение на скаляр (число) сводится к умножению матриц:
- известная нам скалярная матрица.
В равенстве (11) отражен легко проверяемый факт перестановочности с любой матрицей . Весьма важным для приложений является следующее его обращение.
3.3.1
Теорема. Матрица из , перестановочная со всеми матрицами в , должна быть скалярной.
Доказательство. Введем матрицу , в которой на пересечении -й строки и -го столбца стоит 1, а все остальные элементы --- нулевые. Если --- матрица, о которой идет речь в теореме, то она перестановочна,
Перемножая матрицы в левой и правой частях этого равенства, мы получим матрицы
с единственным ненулевым -м столбцом и соответственно с единственной ненулевой -й строкой. Их сравнение немедленно приводит к соотношениям при и . Меняя и , получаем требуемое.
Отметим еще соотношения , которые непосредственно вытекают из определения умножения матриц на скаляры или, если угодно, из соотношений (11) и из ассоциативности умножения матриц.
Для данной матрицы можно попробовать найти такую матрицу , чтобы выполнялось условие
Если матрица существует, то условию (12) в терминах линейных преобразований отвечает условие
означающее, что --- преобразование, обратное к . существует тогда и только тогда, когда --- биективное преобразование. При этом определено однозначно. Так как , то биективность означает, в частности, что
Пусть теперь --- какое-то биективное линейное преобразование из в . Обратное к нему преобразование существует, но, вообще говоря, не ясно, является ли оно линейным. Чтобы убедиться в линейности , мы введем векторы-столбцы
и применим к обеим частям этих равенств преобразование . В силу его линейности получим
Так как , то
откуда, в соответствии с импликацией (13), находим, что , --- нулевые векторы. Таким образом, выполнены свойства (i), (ii) из 3.1, определяющие линейные отображения. Имеем , где --- некоторая матрица. Переписав условие () в виде (см. (8)) и снова воспользовавшись теоремой 1, мы придем к равенствам (12).
Итак, матрица, обратная к , существует в точности тогда, когда преобразование биективно. При этом преобразование линейно
. Биективность равносильна условию, что любой вектор-столбец записывается единственным образом в виде (1)
где --- столбцы матрицы (сюръективность приводит к существованию , для которого , а инъективность дает единственность : если , то , откуда, согласно (12), ). Значит, совпадает с пространством столбцов матрицы , так что .
Если матрица, обратная к , существует, то, согласно вышесказанному, она единственна. Ее принято обозначать символом . В таком случае (см. ())
Квадратную матрицу , для которой существует обратная матрица , называют невырожденной
(или неособенной
). Невырожденным называют и соответствующее линейное преобразование . В противном случае матрицу и линейное преобразование называют вырожденными
(или особенными
).
Резюмируем полученные нами результаты.
3.3.2
Теорема. Квадратная матрица порядка является невырожденной тогда и только тогда, когда ее ранг равен . Преобразование , обратное к , линейно и задается равенством (14)
.
Следствие. Невырожденность влечет невырожденность и . Если --- невырожденные --- матрицы, то произведение также невырождено и .
Для доказательства достаточно сослаться на симметричность условия .
Нами получено довольно много правил действий с квадратными матрицами порядка . Имеются в виду, ассоциативность (следствие теоремы 2), (10) и теорема 4. Обратим еще внимание на так называемые законы дистрибутивности
:
где , , --- произвольные матрицы из .
Действительно, полагая , мы получим для любых равенство (используется дистрибутивность в ):
левая часть которого дает элемент матрицы , а правая --- элементы и матриц и соответственно . Второй закон дистрибутивности (16) проверяется совершенно аналогично. Необходимость в нем обусловлена некоммутативностью умножения в . Законы дистрибутивности
для линейных отображений , , из в можно не доказывать, ссылаясь на соответствие между отображениями и матрицами, но можно, в свою очередь, выводить (16) из (), поскольку в случае отображений, рассуждение столь же просто.
Заключение
Таким образом, в данной курсовой работе мы доказали, что связанная компонента единицы алгебраической группы содержится в любой замкнутой подгруппе конечного индекса. В работе была доказана теорема: Для любой прямоугольной -матрицы справедливо равенство (это число называется просто рангом матрицы и обозначается символом ).А также было
получено эффективное средство для вычисления ранга матрицы , устраняющее необходимость приведения к ступенчатому виду, доказана теорема: Квадратная матрица порядка является невырожденной тогда и только тогда, когда ее ранг равен . Преобразование , обратное к , линейно и задается равенством (14)
и следствие этой теоремы: невырожденность влечет невырожденность и . Если --- невырожденные --- матрицы, то произведение также невырождено и .
Список использованных источников
1. Шеметков Л.А., Скиба А.Н., Формации алгебраических систем. - М.: Наука, 1989. - 256с.
2. Русаков С.А., Алгебраические -арные системы. Минск, 1987. - 120с.
3. Кон П., Универсальная алгебра. М.:Мир, 1968.--351с.
4. Ходалевич А.Д., Свойства централизаторов конгруэнции универсальных алгебр// Вопросы алгебры.-1996.-Вып.10 с.144-152
5. Mонaxов В.С. Произведение конечных групп, близких к нильпотентным.- В кн.: Конечные группы. Мн.: Наука и техника, 1975, с. 70 - 100.
|