Однофакторный дисперсионный анализ
В общем виде эту задачу можно поставить следующим образом: пусть мы наблюдаем m независимых нормально распределенных случайных величин (1) предполагая, что все они имеют одинаковую дисперсию (эту гипотезу можно проверить с помощью F-критерия). Средние значения случайных величин (2) вообще говоря, различны. Пусть в одинаковых экспериментальных условиях над каждой из переменных (1) производится некоторая серия наблюдений (для простоты ограничимся случаем равночисленных наблюдений, хотя это обстоятельство несущественно для теории). Данные k-й серии пусть будут (k=1,2,…..,m) (3).
Опираясь на эти статистические данные, мы хотим проверить гипотезу, согласно которой средние значения (2) равны, т.е. a1
=a2
=…..=am
(4)
Если проверяемая гипотеза, называемая нулевой гипотезой, верна. поставив средние в каждой серии, мы не должны получить ш расхождения между ними; если такое расхождение обнаружено то гипотезу (3) приходится отбросить.
Примером подобной ситуации может служить статистическое исследование урожайности сельскохозяйственной культуры в зависимости от 1 из m сортов почвы при некотором способе ее обработки. Истинное значение урожайности для каждого из m сортов почвы неизвестно, а экспериментально наблюдаемые урожайности (3) в каждом из n экспериментов на этих сортах почвы содержат ошибки, возникающие из-за тех или иных случайных причин. Будет ли одинаковой урожайность на всех сортах почвы, если предположить, что измерения (3) проводились с ‚одинаковой точностью и в одинаковых условиях? Иначе говоря, мы хотим проверить влияние одного фактора сорта почвы — на урожайность .сельскохозяйственной культуры. В другой постановке та же задача возникает, если мы хотим проверить, насколько влияют и влияют ли вообще на плодородие почвы источники загрязнения. В этом случае сорт почвы может меняться и давать разную урожайность в зависимости от удаленности обрабатываемого участка земли от источника загрязнения.
Таблица результатов измерений будет иметь следующий вид (табл. 1):
Результаты измерений урожайности
Номер сорта почвы
|
Номер эксперимента |
| 1 |
2 |
3 |
… |
n |
| 1 |
x11
|
X12
|
X13
|
… |
X1n
|
| 2 |
X21
|
X22
|
X23
|
… |
X2n
|
| 3 |
X31
|
X32
|
X33
|
… |
X3n
|
| … |
… |
… |
… |
… |
… |
| m |
Xm1
|
Xm2
|
Xm3
|
… |
xnm
|
Обозначим через среднее арифметическое из n наблюдаемых урожайностей на почве первого сорта, через — среднее из урожайностей в почве второго сорта и т. д., так, что
, …,
Систематические ошибки наблюдений урожайностей на разных почвах неодинаковы, то мы должны ожидать повышенного рассеивания выборочных средних.
Обозначим через общее среднее арифметическое всех nm измерений так, что .(5)
Суммирование по k при постоянном i дает сумму по всем наблюдениям i-той серии (т.е. по i-му сорту почвы). Дальнейшее суммирование по i дает итог по всем сортам почвы. Так как
, то .
В то же время

 ,(6)
причем
.
Но , так как представляет собой сумму отклонений наблюдений i-й серии от средней этой же серии и потому S=0. (7)
Забиваем Сайты В ТОП КУВАЛДОЙ - Уникальные возможности от SeoHammer
Каждая ссылка анализируется по трем пакетам оценки: SEO, Трафик и SMM.
SeoHammer делает продвижение сайта прозрачным и простым занятием.
Ссылки, вечные ссылки, статьи, упоминания, пресс-релизы - используйте по максимуму потенциал SeoHammer для продвижения вашего сайта.
Что умеет делать SeoHammer
— Продвижение в один клик, интеллектуальный подбор запросов, покупка самых лучших ссылок с высокой степенью качества у лучших бирж ссылок.
— Регулярная проверка качества ссылок по более чем 100 показателям и ежедневный пересчет показателей качества проекта.
— Все известные форматы ссылок: арендные ссылки, вечные ссылки, публикации (упоминания, мнения, отзывы, статьи, пресс-релизы).
— SeoHammer покажет, где рост или падение, а также запросы, на которые нужно обратить внимание.
SeoHammer еще предоставляет технологию Буст, она ускоряет продвижение в десятки раз,
а первые результаты появляются уже в течение первых 7 дней.
Зарегистрироваться и Начать продвижение
По этому приняв во внимание, что
,(8)
мы можем основное тождество (6) записать в следующем виде
, (9) или в сокращенном виде ,(10)
где , , 
Таким образом, общая сумма квадратов ‚ распадается на две составные части, первая из которых связана с оценкой дисперсии урожайности между сортами почвы, а вторая — с оценкой дисперсии внутри всех сор почвы.
Предположим теперь, что гипотеза (4) верна, и потому нормальные распределения всех величин (урожайностей) тождественны. имеют одинаковые среднее значение и дисперсию .Тогда же nm наблюдений можно рассматривать как выборку из одной и той же нормальной совокупности .
Можно показать, что при этой гипотезе статистики , и распределены по закону соответственно с , , степенями свободы, а по тому Q, Q1
, Q2
могут быть использованы в этом случае для оценки . Эта оценка может быть поведена с помощью несокращенных характеристик
, , .
При более детальном изучение показывает, что Q1
и Q2
при нашей гипотезе независимы друг от друга. Заметим, этот вывод справедлив при любых предположениях относительно ai
.
Из сказанного вытекает, что критерий
(11) в гипотезе (4) будет следовать F-распределению с и степенями свободы. Выбирая q%-й уровень значимости при известных , , найдем по таблице 20 в приложение соответствующий q% предел так, что P
(
F
>
Fq
)
.
Пусть с другой стороны наша гипотеза неверна и средние значения (2) не равны друг другу, но параметр во всехm совокупностях один и тот же, когда сумма Q2
, не изменяющаяся при замене на , имеет, как можно доказать. По-прежнему распределение и степенями свободы, .
По-прежнему является несмещенной оценкой для . В то же время числитель F в (7,14) учитывает систематические расхождения между средними значениями ai
, и имеет тенденцию расти и становится тем больше, чем больше отклонения от предполагаемого равенства значений ai
. Поэтому правила проверки гипотезы дается в следующем виде: a1
=a2
=…..=am
принимается, если ; в этом случае и несмещенными оценками параметров a и нормально распределенных случайных величин (1).
Если ,то нулевая гипотеза отклоняется, и следует считать, что среди значений имеются хотя бы два не равных друг другу.
Схема однофакторного дисперсионного анализа
| Компонента дисперсии |
Сумма квадратов |
Число степеней свободы |
Выборочная дисперсия |
| Между сортами почвы |
 |
 |
 |
| Внутри сортов почвы |
 |
 |
 |
| Полная (общая) |
 |
 |
 |
Сравнивая дисперсию между сортами почвы с дисперсией «внутри» почвы, по величине их отношения (11) судят, насколько рельефно проявляется влияние такого фактора, как сорт почвы; в этом сравнении как раз и заключается основная идея дисперсионного анализа. Схему однофакторного дисперсионного анализа можно представить в , табл. 2.
Сервис онлайн-записи на собственном Telegram-боте
Попробуйте сервис онлайн-записи VisitTime на основе вашего собственного Telegram-бота:
— Разгрузит мастера, специалиста или компанию;
— Позволит гибко управлять расписанием и загрузкой;
— Разошлет оповещения о новых услугах или акциях;
— Позволит принять оплату на карту/кошелек/счет;
— Позволит записываться на групповые и персональные посещения;
— Поможет получить от клиента отзывы о визите к вам;
— Включает в себя сервис чаевых.
Для новых пользователей первый месяц бесплатно.
Зарегистрироваться в сервисе
В качестве числового примера рассмотрим данные пятикратного (n=5) измерения урожайности на трех (т =3) сортах почвы. В таблице приведены данные не фактического, а условного эксперимента;
Результаты измерения урожайности в относительных единицах
Из таблицы имеем:
 ;
; 
; ; ; .
Для нашего примера таблица однофакторного анализа будет иметь следующий вид
дисперсионный анализ урожайности на различных сортах почвы
| Компонента дисперсии |
Сумма квадратов |
Число степеней свободы |
Выборочная дисперсия |
Между сортами
почвы
|
Q1
=137 |
2 |
 |
| Внутри сортов почвы |
Q2=102.2 |
12 |
 |
| Полная (общая) |
Q3
=239.2 |
14 |
 |
Произведя теперь проверку нулевой гипотезы (4) с помощью распределения, находим 
При двух степенях свободы большей дисперсии (k1
= 2) и 12 е свободы меньшей дисперсии (k2
= 12) по табл. в приложении II находим критические границы для F, равные при 5%-м уровне pзначимости и 3.88 и 1%-м уровне — 6.93. Полученное нами из наблюдений значение превышает указанные границы, и потому нулевая гипотеза должна быть отвергнута, т.е. урожайность на рассматриваемых сортах почвы неодинакова.
|