Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Інтегрування виразів що містять тригонометричні функції Приклади первісних що не є елементарн

Название: Інтегрування виразів що містять тригонометричні функції Приклади первісних що не є елементарн
Раздел: Рефераты по астрономии
Тип: реферат Добавлен 10:32:36 02 февраля 2011 Похожие работы
Просмотров: 36 Комментариев: 14 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно     Скачать

Пошукова робота на тему:

Інтегрування виразів, що містять тригонометричні функції. Приклади первісних, що не є елементарними функціями. Використання таблиць неозначених інтегралів.

П лан

  • Інтегрування виразів, що містять тригонометричні функції
  • Інтеграли вигляду
  • Інтеграли вигляду
  • Інтеграли вигляду

· Інтеграли вигляду

  • Інтеграли вигляду ( - ціле, додатне число)
  • Інтеграли вигляду

8.3.9. Інтегрування трансцендентних функцій

а) Усі інтеграли вигляду інтегруються в замкненому вигляді. Тут - символ раціональної функції. Справді, підстановка зводить цей інтеграл до вигляду

Приклад. За допомогою заміни інтеграл перетворюється в такий :

б) Як уже зазначалося, інтеграли зводяться до розглядуваного. Тому інтеграл нас цікавить не тільки сам по собі, а й у зв’язку з тим, що й інші інтеграли зводяться до нього.

Усі інтеграли типу інтегруються в замкненому вигляді. Підстановка перетворює інтеграл у такий: тобто до інтеграла, розглянутого в п.9.8.

Ймовірно, що способи інтегрування заданого інтеграла в розумінні більшої або меншої трудності залежатимуть від характеру функції : парна чи непарна вона за змінною або , або і і , або, можливо, і не володіє цими властивостями. Нехай

Очевидно, що в цьому випадку її можна подати

у формі

Якщо то

Тому

Звідси випливає така підстановка:

,

тобто - раціональна функція .

Отже, якщо в разі заміни на підінтегральна функція змінює знак, то доцільно є підстановка .

Цілком аналогічно, якщо в разі заміни на

то доцільною є

підстановка .

Розглянемо тепер випадок тобто функція є парною як за , так і за . Очевидно, що .Якщо тепер знаки i замінити на протилежні, то , тобто є парною за , тому

. Вважаючи, що , одержимо

Підстановка зведе інтеграл до вигляду

Отже, у випадку доцільною є заміна змінної .

Оскільки , , (8.26)

то ,

тобто підстановка перетворить інтеграл до вигляду

.

Якщо не задовольняє жодну із розглянутих умов, то інтегрується за допомогою підстановки . Практично інтегруючи функцію перш за все варто встановити, чи задовольняє вона хоча б одну з умов

чи ні. Лише тоді, коли вона не задовольняє жодну, доцільно використати заміну , яку називають універсальною.

Приклад. 1.

Оскільки в разі заміни на і на підінтегральна функція не змінює знака, то підстановка зведе інтеграл до вигляду

Приклад 2. .

Цей інтеграл не задовольняє жодної з указаних умов. Тому слід використати підстановку , яка зведе інтеграл до вигляду

.

Якщо , то

.

Якщо , то

При .

При .

Приклад 3 . .

Підстановка . З її допомогою інтеграл перетвориться в

.

в) Усі інтеграли вигляду

де - раціональна функція, інтегруються в замкненому вигляді. Цей висновок випливає з п.9.4.

г) Інтеграли вигляду

( - ціле, додатне число) можна проінтегрувати відповідно за допомогою підстановок

В результаті матимемо

Аналогічно обчислюється і другий інтеграл.

д) Інтеграли вигляду де - цілі невід’ємні числа, обчислюються, використовуючи формули тригонометрії для пониження степеня:

(8.27)

Тоді

Піднісши до степеня і розкриваючи дужки, одержимо інтеграли, що містять в парних і непарних степенях. Інтеграли з непарними степенями обчислюються, як показано у випадку б). Парні показники степенів знову понижуємо за формулами (9.13). Продовжуючи так, дійдемо до інтегралів які легко обчислюються.

Якщо хоча б один з показників від’ємний, то необхідно робити підстановку (або ).

Інтеграли вигляду можна

проінтегрувати, застосовуючи формулу Муавра. Маємо:

(8.28)

Звідси

Далі обчислимо:

Аналогічно

Тепер уже інтегрування двох інтегралів здійснюється легко для будь-яких скінчених цілих .

е) Усі інтеграли вигляду

можуть бути представлені в замкненому вигляді, якщо функція є цілою раціональною функцією відносно синусів і косинусів величин, що стоять під знаком функції, а всі константи є дійсними числами.

Оскільки ціла раціональна функція будується лише на основі дій додавання, віднімання і множення ( зокрема піднесення до цілого додатного степеня ) , то кожний добуток двох множників можна подати у вигляді суми двох доданків на основі формул

(8.29)

Застосовуючи формули (8.29) послідовно до кожного члена, що є добутком кількох множників, функцію можна подати як лінійну комбінацію синусів і косинусів, аргументи яких є лінійними функціями . Кожна така лінійна комбінація інтегрується елементарно.

Приклад.

є) Усі інтеграли виглядів де є довільними дійсними константами, а – довільний поліном, інтегруються у замкненому вигляді.

Цей висновок випливає з п.8.3.8.

ж) Інтеграли вигляду за допомогою підстановки зводяться до інтегралів від біномінальних диференціалів , які вже були розглянуті в п.8.3.8 є). Там також було з’ясовано, в яких випадках інтеграл від біномінального диференціала інтегрується в замкненому вигляді. Отже, інтеграл виражається через елементарні функції, якщо 1) - ціле число; 2) - ціле число; 3) - ціле число.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Привет студентам) если возникают трудности с любой работой (от реферата и контрольных до диплома), можете обратиться на FAST-REFERAT.RU , я там обычно заказываю, все качественно и в срок) в любом случае попробуйте, за спрос денег не берут)
Olya15:46:31 26 августа 2019
.
.15:46:30 26 августа 2019
.
.15:46:29 26 августа 2019
.
.15:46:28 26 августа 2019
.
.15:46:27 26 августа 2019

Смотреть все комментарии (14)
Работы, похожие на Реферат: Інтегрування виразів що містять тригонометричні функції Приклади первісних що не є елементарн

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(294402)
Комментарии (4230)
Copyright © 2005 - 2024 BestReferat.ru / реклама на сайте