Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Бериллий

Название: Бериллий
Раздел: Рефераты по географии
Тип: реферат Добавлен 17:06:01 08 апреля 2008 Похожие работы
Просмотров: 1437 Комментариев: 19 Оценило: 3 человек Средний балл: 4 Оценка: неизвестно     Скачать

Соединения бериллия в виде драгоценных камней были известны еще в древности. С давних пор люди искали и разрабатывали месторождения аквамаринов, изумрудов и бериллов. Есть свидетельства о том, что еще во времена Египетских фараонов разрабатывавлись изумрудные прииски в Аравийской пустыни.

Но только в конце 18 века химики заподозрили, что в берриллах есть какой-то новый не известный элемент. В 1798 году французский химик Воклен выделил из берилла окись "La terree du beril", отличавшуюся от окиси алюминия. Эта окись придавала солям сладкий вкус, не образовывала квасцов, растворялась в растворе карбоната аммония и не осаждалась оксалатом или тартратом калия. Металлический бериллий был впервые получен в 1828 году известным немецким ученым Велером и одновременно французким ученным Блюссеном, который получил порошок металлического бериллия востановлением хлористого бериллия металическим калием.

Промышленное получение бериллия началось только в 20-х годах нашего столетия. До сороковых годов масштабы производства и применения бериллия были не велики. Однако с открытием свойств бериллия, обусловивших его использование в атомной энергетике спрос на него сильно возрос. Что в свою очередь стало причиной широкого развития исследовательских и геолого-разведочных работ в этой области.

1. Химические и химико-физические свойства

бериллия

Бериллий (Be) - имеет атомный номер 4 и атомный вес 9.0122. Он находится во втором периоде периодической системы и возглавляет главную подгруппу 2 группы, в которую также входят магний, кальций, стронций, барий и радий. Электронная структура атома бериллия 1s 2s. На внешней оболчке он имеет два электрона, что является характерным для элементов этой группы. Электронная структура внешней оболочки иона каждого из этих элементов с зарядом +2 соответствует электронной структуре инертного газа с атомным номером на две единицы меньше номера рассматриваемого элемента. Бериллий вещество серо-стального цвета; при комнатной температуре металлический бериллий имеет плотно упакованную гексагональную решетку, подобную решетке магния.

Атомный (металлический) радиус бериллия равен 1.13 А.

Увеличение массы и заряда ядра при сохраненнии конфигурации электронных оболочек служит причиной резкого уменьшения атомного и ионного радиусов бериллия по сравнению с соседним литием. После отрыва валентных электронов атом бериллия образует ион типа благородных газов, и несет, подобно литию,всего одну электронную оболочку, но характеризуется значительно меньшими размерами и компактностью. Истинный ионный радиус бериллия - 0,34 А является наименьшим среди металлов.

Потенциалы ионизации у бериллия равны (соответсвенно для первого, второго, третьего и четвертого электронов) I1-9,28;I2-18,12; I3-153,1; I4-216,6 эВ. На кривой потенциалов ионазации бериллий занимает одно из верхних мест. Последнее соответсвует его малому радиусу и характеризует бериллий как элемент не особенно охотно отдающий свои электроны, что в первую очередь определяет степень химической активности элемента. Этот же фактор имеет решающее значение в образование того или иного типа химической связи при соединение бериллия с другими элементами. С точки зрения электроотрицательности бериллий наряду с алюминием может расматриваться как типичный переходный элемент между электроположительными атомами металлов, легко отдающих свои электроны, и типичными комплексообразователями, имеющими тенденцию к образованию ковалентной связи.

В нейтральных растворах гидроокилы бериллия дисоциируют по схеме:

2+ _ + 2-

Be + OH = Be(OH) = H BeO = 2H + [BeO ]

2 2 2 2

В щелочных растворах, содержащих атомы щелочных элементов, осуществляется возможность возникновения более прочной ковалентной связи между анионом и атомом амфотерного элемента. Происходит образование комплекса, прочность которого в первую очередь определяется концентрацией элементов с низким значением электроотрицательности, то есть щелочей. Бериллий в этих условиях ведет себя как комплексообразователь.

В кислых растворах, характеризующихся высокой концентрацией водородного иона, элементы с низким значение электроотрицательности, подобные бериллию, могут находится в форме свободных, положительно заряженных ионов, т.е. являются катионами.

Свойства основности элемента, как известно характеризуются также велечиной ионого потенциала w/r, выражающего энергию силового поля иона. Как и следовало ожидать, маленький ион бериллия отличается большой величиной ионого потенциала, равной 5,88.

Таким образом, по характеру своих химических свойств,всецело определяемых особенностями строения электронных оболочек атома, бериллий относится к типичным амфотерным элементам.

Металлический бериллий растворяется в соляной и разбавленной азотной кислоте, а также в водных растворах гидроокисей натрия и калия с выделением водорода и образованием бериллатов c общей формулой М Ве О .

Наибольший интерес с точки зрения возможной точки зрения возможной роли в природных процессах представляют галоидные и карбонатные соединения. Фтористый и хлористый бериллий представляет собой устойчивые соединения, очень хорошо растворимые в воде. Оба они легкоплавки (температура плавления фтористого бериллия 577, хлористого бериллия 405) и относительно легко сублимируются. В то же время нейтральный карбонат бериллия почти нерастворим в воде и является весьма непрочным соединением.

В слабо щелочной и кислой среде в присутствии определенного количества электроположительных атомов щелочных металловы характерным для бериллия является образование комплексов типа:

При этом все комплексы бериллия являются малопрочными соединениями, которые могут существовать только в определенных интервалах щелочности растворов.

Таким образом на основании общего обзора химических свойств бериллия могут быть сделаны следующие предварительные выводы, характеризующие возможную роль различных соединений бериллия в геохимической истории этого элемента.

1) в условиях существенно кислой среды при низкой концентрации в растворах электроположительных атомов щелочей бериллий, вероятнее всего, может мигрировать в форме прекрасно растворимых и легко-летучих галоидных соединений -фторидов и хлоридов;

2) в слабокислой и щелочной средах в присутствии дростаточного количества электроположительных атомов щелочей миграция бериллия может осуществляться в форме разлчных комплексных бериллатов, обладающих разной устойчивостью в заваисимости от характера среды;

3) существенно щелочная среда в некоторых случаях также может способствовать миграции бериллия в форме бериллатов или карбонатбериллатов, легко распадающихся при понижении щелочности раствора;

4) миграция растворимых в воде соединений бериллия может осуществляться как в истинных, так и в надкритических растворах, поскольку соединения, растворимые в жидкой воде, легко растворяются и в надкритической фазе воды, давая ненасыщенные такими соединениями растворы;

Заканчивая характеристику отдельных свойств бериллия, без внимательного анализа которых вряд ли возжможно правильно представить его минералогию и понять особенности поведения в природных процессах, необходимо отметить, что свойства многих соединений бериллия, интересных в геохимическом отношении, изучены совершенно недостаточно.

2. Распространение и минералогия бериллия

Бериллий несмотря на малый ионный номер относится к редким элементам. Содержание его в земной коре оценивается в настящее время от 6*10^-4 до 2*10^-4. Такую малую распространенность Ве объясняют его способностью взаимодействовать с протонами и нейтронами высоких энергии. В пользу этого объяснения говорит тот факт, что бериллия мало в атмосфере солнца и звезд, а в межзвездном пространстве, где условия для ядерных реакции неблагоприятны его количество резко возрастает. Но наряду с процессом непрерывного распада его атомов, также в результате многочисленных ядерных реакциим идет процесс новообразования его изотопов.

- 4 -

Бериллий имеет только один устойчивый изотоп, но кроме него также известны изотопы с массой 7,8,9,10.

Изотопы бериллия Таблица 1

Изотопы

Масса

Период

полураспада

Ве- 7 7.0192 52.9 дня
Ве- 8 8.0078 < 5*10^-14 сек
Ве- 9 9.0150 стабилен
Ве- 10 10.0168 2.7*10^6 лет

Содержание изотопов бериллия в метероритах потверждают гипотезу космической дефицитности бериллия. Но в отдельных метеоритах отмечается содержание бериллия близкое к его среднему содержанию в земной коре.

Для вывода среднего содержания бериллия в земной коре был использовано большое количество средних объединенных проб систематически отобранных по разным магматическим массивам. На основание этих данных был вычислен кларк бериллия,который оказался равен 3.5* 10^-4.

При формирование земной коры бериллий концентрировался в остаточной магме в процессе ее затвердевания. Такое концентрирование в остаточных магматических породах имеет большое значение, поскольку благодаря ему элемент оказывается более доступным, чем можно было бы ожидать учитывая его малую распространенность в земной коре.

В природе минералы бериллия образуются в весьма различных условиях, присутствуя во всех типах минеральных месторождений, за исключением собственно магматических. При этом наибольшее число бериллиевых минералов известно в пегматитах.

В настоящее время в природе известно 40 минералов бериллия, изученных в большинстве своем совершенно недостаточно.

Подавляющее большинство бериллиевых минералов являются редкими или очень редкими и известны лишь в одном или двух месторождениях земного шара. Распределение бериллиевых минералов по классам химических соединений весьма неравномерно и определяется литофильностью его атома при полном отсутствии халькофильности. Главную роль среди минералов играют силикаты 65% от общего числа минералов, меньшее значение имеют окислы и фосфаты. Сульфиды среди минералов бериллия отсутсвуют полностью, что подчеркивает литофильность этого элемента.

- 5 -

Распределение бериллиевых минералов

по классам Таблица 2

Классы Типичные представители Кол-во минер % от общчисла
Окислы Хризоберилл 3 7.5
Силикаты Гельвин, Даналит 26 65.0
Берилл, Фенакит
Гадолинит
Бораты Родицит 2 5.0
Антимонаты Сведенборгит 1 2.5
Фосфаты Бериллонит 7 17.5
Карбонаты Бериллийтенгерит 1 2.5

3. Геохимия бериллия

В геохимических процессах бериллий ведет себя как типично литофильный элемент. По классификации Перельмана бериллий относится к слабо мигрирующим элементам.

Содержание бериллия в горных породах Таблица 2

Наименование породы Содержание Ве
10 ^-4
Ультраосновные породы Менее 0,2
Габбро-нориты Менее 0,2
Габбро 0,3
Средние породы 0,8 - 0,9
Кислые породы 1 - 32 (ср 5)
Щелочные породы 5 - 20 (ср 7)

При рассмотрение распространения бериллия в магматических горных породах, следует отметить, что бериллий не накапливается не в ультроосновных, не в основных магмах, присутствую в них во много раз меньших количествах, чем его среднее кларк в земной коре.

Таким образом геохимическая история бериллия в земной коре всецело связана с историей образования кислых и щелочных магм, заключающих в себе более 95% атомов бериллия. При этом особенности поведениЯ бериллия в процессах кристаллизации кислых и щелочных магм определяются в первую очередь геохимической спецификой этих существенно отличных друг от друга процессов.

Ничтожное содержание бериллия в гранитном расплаве исключает возможность образование индивидуализированных бериллиевых минералов. В то же время отсутсвие в расплаве высоковалентных катионов, которые могли бы компенсировать вхождение бериллия в кристалическую решетку силикатов, затрудняет и ограничивает захват бериллия породообразующими минералами гранитов. Таким образом, ограниченное рассеяние бериллия в продуктах главной фазы кристаллизации гранитной магмы приво

- 6 -

дит к его накоплению в продуктах конечной стадии кристаллизации. Особенно резкое, скачкообразное обогащение поздних магматических продуктов бериллием, по-видимому, происходит в процессе кристализации кварца гранитов, практически не принимающего бериллия в свою решетку. С этим процессом связано появление на поздних стадиях формирования гранитнов расплавов, эманации и растворов, в различной стадии обогащенной бериллием. Дальнейшая их судьба этих образований, определяющаяся общими закономерностями становления конкретного магматического очага и геохимической спецификацией, крайне разнообразна.

Следы их деятельности мы видим в широко распространне

ных процессах мусковитизации и грейзенизации гранитов, когда в процессе изменения гранитов концентрации бериллия возрастает в два раза по сравнению с количеством в биотитовых и прочих гарнитов, не затронутых процессом мусковитизации.

Наиболее ярко эти процессы протекают в процессе образования постматических месторождений бериллия, приводящих к образованию месторождений содержащих многие тысячи тонн этого элемента. Наивысшее возможное содержаниме бериллия, присутсвующего в качестве изоморфной примеси в минералах гранитов может достигать 15-20 *10^-4%.

Несколько повышенное рассеяние бериллия наблюдается в гранитах с повышенным содержание редких земель.

Останавливаясь на особенностях поведения бериллия в щелочгых магмах необходимо подчеркнуть следующие факторы, влияющие на судьбу бериллия в этих процессах:

1) высокий кларк редких земель

2) длительное участие высоковалентных катионов в процессах минералообразования

3) повышенная щелочность среды

Указанные факторы облегчают изоморфный захват бериллия в процессе кристализации породообразующих элементов, препятсвуя концентрации бериллия. Несмотря, на значительно более высокое содержание бериллия по сравнению со средним кларком литосферы, наиболее типичной особенностью его поведения в щелочных породах является рассеяние.

Появление концентрации бериллия в щелочных породах можно ожидать в процессе перераспределения бериллия в процессе широкомасштабной альбитизации пород, содержащих повышенное количество бериллия.

Геохимическая история бериллия в пегматитовом процессе может служить ярким примером послемагматической концентрацией рассеяного элемента.

Накапливась по мере развития пегматитового процесса после формирования зон графического и среднезернистого пегматита,и выделения крупных мономинеральных блоков микроклин-пертитов, бериллий концентрируется в остаточных обогащенных летучими порциях пегматитового расплава-раствора. Наконец в определенный момент, обычно отвечающий окончанию формирования крупных мономинеральных блоков, в условиях сильного пересыщения кремнием, накопления натрия и летучих компонентов начинается формирование главного бериллиевого минерала гранитных пегматитов - берилла, продолжающегося в стадии пневмато

- 7 -

лито-гидротермальных замещений.

В период формирования пегматитов особенности концентрации и миграции бериллия тесно связаны с поведением летучих составных частей пегматитового расплава-раствора. Подобная связь четко проявляется в образование наиболее высоких концентраций бериллиевых минералов в апикальных участках пегматитовых тел.

В обстановке относительно высокой концентрации щелочей,характерной для рассматриваемого периода формирования пегматитов, а также в присутствии галоидов и углекислоты, играющих роль активных экстракторов-минерализаторов, перенос бериллия осуществляется в форме подвижных комплексных соединений типа хлорбериллатов, фторбериллатов и карбонат бериллатов целочных металлов мигрирующих в процессе формирование пегматита в надкритических, а позднее в водных растворах в центральные части пегматитовых тел и в верхнии горизонты пегматитовой инъекции.

Таким образом, при переносе бериллия в форме мобильных комплексных галоидных или карбонатных соединений с щелочными металлами выпадения бериллия в твердую фазу в виде бериллиевых минералов можно представить как сложный процесс распада подвижных соединений бериллия и связывание его в форме трудно растворимых силикатах бериллия и алюминия. Решающее значение, по-видимому, имеет изменение режима кислотно-щелочности растворов в сторону увеличения рН, а также появления жидкой фазы Н О, легко вызывающую гидролиз таких непрочных соединений, как хлорбериллаты и др. Роль осадителя бериллия также играет фосфор, образующий с бериллием ряд устойчивых в обычных гидротермальных условиях минералов.

В скарнах высокая концентрация фтора, при сравнительно низкой концентрации щелочей приводит к переносу бериллия в виде фторидов и фторбериллатов. При этом важное значение в уменьшение миграционной способности бериллия имеет увеличение значения pH минералообразующего раствора, происходящее под влиянием связывания атомов фтора кальцием вмещающих пород.

Геохимическая история бериллия в мезо- и эпитермальном процессе изучена слабо, однако наличие концентрации бериллия, связанных со сравнительно низкотемпературными карбонатными жилами, а также присутствие бериллиеввых минералов в жилах альпийского типа говорит о достаточно широком диапазоне его миграции в гидротермальных условиях.

В жильных образованиях, формирование которых происходило в обстновке высокой концентрации карбонат иона, перенос бериллия осуществлялся в карбонатной форме.

Особенности миграции бериллия в области гипергенеза изучены еще не достаточно. При этом следует отметить тот факт,что большинство бериллиевых минералов, имеющих значительное распространение, весьма устойчиво по отношению к агентам химического выветривания. Все эти минералы в процессе выветривания содержщих их пород подвергаются в основном механическому разрушению, рассеяваясь в процессе эрозии с обломочным материалом. Незначительный удельный вес минералов бериллия препятствует образованию россыпных месторождений бериллия.

В бокситах отмечается незначительное увеличение концентрации бериллия, как этого можно было бы ожидать, учитывая сходство бериллия и алюминия.

В глинах в связи с высоким ионным потенциалом бериллия

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита07:08:41 02 ноября 2021
.
.07:08:40 02 ноября 2021
.
.07:08:39 02 ноября 2021
.
.07:08:38 02 ноября 2021
.
.07:08:37 02 ноября 2021

Смотреть все комментарии (19)
Работы, похожие на Реферат: Бериллий

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(294402)
Комментарии (4230)
Copyright © 2005 - 2024 BestReferat.ru / реклама на сайте