Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Курсовая работа: Анализ функции фильтрационного сопротивления для неустановившегося притока жидкости (газа) к несовершенной скважине

Название: Анализ функции фильтрационного сопротивления для неустановившегося притока жидкости (газа) к несовершенной скважине
Раздел: Рефераты по географии
Тип: курсовая работа Добавлен 16:15:02 08 апреля 2008 Похожие работы
Просмотров: 222 Комментариев: 21 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно     Скачать

Министерство общего и профессионального образования РФ

Тюменский Государственный Нефтегазовый Университет

Кафедра РЭНиГМ

Реферат

«Анализ функции фильтрационного сопротивления для неустановившегося притока жидкости (газа) к несовершенной скважине»

Выполнил студент

Группы НГР-96-1

Принял профессор

Телков А. П.

Тюмень 1999 г.
Рассмотрим функция (F) котораяесть функ­ция пяти параметров F=F (f0 ,rc , h, x, t*), каждый из которых — безразмерная ве­личина, соответственно равная

(1)

где r — радиус наблюдения;

x — коэффициент пьезопроводности;

Т — полное время наблюдения;

h — мощность пласта;

b — мощность вскрытого пласта;

z — координата;

t — текущее время.

Названная функция может быть ис­пользована для определения понижения (повышения) давления на забое скважи­ны после ее пуска (остановки), а также для анализа распределения потенциала (давления) в пласте во время работы скважины.

Уравнение, описывающее изменение давления на забое, т. е. приx=h;r=rc или r=rc , имеет вид

(2)

где безразмерное значение депрессии связано с размерным следующим соот­ношением

где(3)

здесь Q — дебит;

m — коэффициент вязкости;

k — коэффициент проницаемости.

Аналитическое выражение F для оп­ределения изменения давления на за­бое скважины запишем в виде

(4)

Уравнение (2) в приведенном виде не может использоваться для решения инженерных задач по следующим при­чинам: во-первых, функция (4) сложна и требует табулирования; во-вторых, вид функции исключает возможность выделить время в качестве слагаемого и свести решение уравнения (2) к урав­нению прямой для интерпретации кри­вых восстановления (понижения) давле­ния в скважинах традиционными мето­дами. Чтобы избежать этого, можно по­ступить следующим образом.

В нефтепромысловом деле при гид­родинамических исследованиях скважин широко используется интегрально-пока­зательная функция. Несовершенство по степени вскрытия пласта в этом случае учитывается введением дополнительных фильтрационных сопротивлений (C1 ), взятых из решения задач для установившегося притока. В соответствии с этим уравнение притока записывается в виде

(5)

Как видно, дополнительные фильтрационные сопротивления являются функ­цией геометрии пласта. Насколько вер­но допущение о возможности использо­вания значений C1 (rс , h), пока еще ни теоретически, ни экспериментально не доказано.

Для неустановившегося притока урав­нение (2) запишем аналогично в виде двух слагаемых, где в отличие от вы­ражения (5) значения фильтрационных сопротивлений являются функцией трех параметров (rс , h, f0 )

(6)

Как _ видим, дополнительное слагае­мое R(rc , h, f0 ) в уравнении (6) зависит не только от геометрии пласта, но и от параметра Фурье (f0 ). В дальнейшем бу­дем называть это слагаемое функцией фильтрационного сопротивления. Заме­тим, что при h=l (скважина совершен­ная по степени вскрытия) уравнение (2) представляет собой интегрально-по­казательную функцию

(7)

С учетом равенства (7) решение (6) за­пишем в виде

(8)

Разрешая уравнение (8) относительно функции сопротивления и учитывая уравнение (2), находим

(9)

и на основании равенства (7) приведем выражение (9) к виду

(10)

Численное значение R(rс ,h,fo) рас­считано по уравнению (10) на ЭВМ в широком диапазоне изменения парамет­ров rc , h, f0 . Интеграл (2) вычислялся методом Гаусса, оценка его сходимости выполнена согласно работе [3]. С уче­том равенства (7) вычисления дополнительно проконтролированы по значени­ям интегрально-показательной функции.

С целью выяснения поведения депрессии и функции сопротивления проана­лизируем их зависимость от значений безразмерных параметров.

1. Определим поведение Dр в зави­симости от значений параметров rс , h, f0 .

Результаты расчетов значений де­прессии для каждого фиксированного rc сведены в таблицы, каждая из кото­рых представляет собой матрицу разме­ром 10х15. Элементы матрицы это зна­чения депрессии Dp(rc ) для фиксиро­ванных h и f0 . Матрица построена та­ким образом, что каждый ее столбец есть численное значение депрессии в зависимости от h, .а каждая строка со­ответствует численному значению де­прессии в зависимости от fo (табл. 1). Таким образом, осуществлен переход от значений безразмерной депрессии Dp(rc , h, f0 ) к относительной депрессии

Dр*i,j (rc ).

Для удобства построения и иллюст­рации графических зависимостей выпол­нена нормировка матрицы. С этой це­лью каждый элемент i-й строки матри­цы поделен на максимальное значение депрессии в данной строке, что соответ­ствует значению j==15. Тогда элементы новой матрицы определятся выраже­нием

(11)

Условимся элементы матрицы назы­вать значениями относительной депрес­сии. На рис. 1 приведен график изме­нения относительной депрессии при фик­сированных значениях h. Характер по­ведения относительной депрессии поз­воляет описать графики уравнением пучка прямых


(12)

Рис. 1. Поведение относительной депрес­сии (rc =0,0200, hi =const, f0 ) при значениях h, равных: 1— 0,1; 2 — 0,3; 3—0,5;4 — 0.7; 5 —0,9; 6—1,0.

где ki — угловой коэффициент прямой, который определяется h и от индекса j не зависит.

Анализ зависимости поведения де­прессии Dp* i,j от f0 для всех rc >0,01 показывает, что графики этой зависимости можно описать уравнением пучка прямых для любого значения h. Для rc < 0,01 в графиках зависимости появляются начальные нелинейные уча­стки, переходящие при дальнейшем уменьшении параметра f0 (или же при увеличении его обратной величины 1/foj ) в прямые для всех значений h<l,0

(рис. 2). При h=l,0 поведение депрес­сии строго линейно. Кроме того, протя­женность нелинейного участка для раз­ных rc при h=const различна. И чем меньше значение безразмерного ради­уса rc , тем больше протяженность не­линейного участка (рис. 2).

2. Определим поведение R(rc , h, f0 ) и ее зависимость от безразмерных па­раметров rc , h, f0 .

Значения R(rc , h, f0 ) рассчитаны для тех же величин параметров rc , h, f0 . ко­торые указаны в пункте 1, обработка результатов также аналогична. Переход от безразмерной функции сопротивле­ния R(rc , h, f0 ) к относительной R* i,j (rc ) осуществлен согласно выражению

.(13)

Анализ поведения R* i,j (rc ) и резуль­таты обработки расчетного материала, где установлена ее зависимость от па­раметров rc , h, f0 , частично приведены на рис, 2 (кривые даны пунктиром).

При гc >0,01 для любого hi R* i,j (rc ) уже не зависит от f0i .

Из анализа данных расчета и графи­ков рис. 2 следует: при rc <0,01 в по­ведении R* i,j (rc ) для всех h<l,0 на­блюдается нелинейный участок, перехо­дящий с некоторого значения f0 (точка С на графике) в прямую линию, парал­лельную оси абсцисс. Важно отметить,

что для одного и того же значения rc абсцисса точки перехода нелинейного участка в линейный для R* i,j (rc ) имеет то же самое значение, что и абсцисса точек перехода для графиков зависи­мостиDp* i,j (rc ) от ln(l/f0i ) (линия CD). Начиная с этого момента, R* i,j (rc ) для данного rc при дальнейшем наблюдении зависит не от времени, а только от hi • И чем выше степень вскрытия, т. е. чем совершеннее скважина,. тем меньше бу­дет значение R* i,j (rc ) И при h=l (сква­жина совершенная по степени вскры­тия) функция сопротивления равна ну­лю. Очевидно, нелинейностьDp* i,j (rc ) связана с характером поведения функ­ции сопротивления, которая, в свою оче­редь, зависит от параметра Фурье. От­метим также, что в точке С (рис. 2) численное значение функции сопротив­ления становится равным значению фильтрационных сопротивлений (C1 (rc , h)) для притока установившегося ре­жима.


Рис. 2. Поведение относительной депрес­сии и относительной функции фильтрационного сопротивления (rc =0,0014, h=const, f0 ) при h, равных: 1,1'—0,1; 2,2'— 0,3; 3,3'—0,5; 4,4'—0,7; 5,5'— 0,9;6,6'— 1,0.

выводы

1. Депрессия на забое несовершенной по степени вскрытия скважины для всех rc < 0,01 имеет два явно выражен­ных закона изменения: а) нелинейный, который обусловлен зависимостью функ­ции сопротивления от времени и соот­ветствует неустановившемуся притоку сжимаемой жидкости (газа); б) линей­ный, который соответствует квазиустановившемуся притоку и не связан с функцией сопротивления.

2. Величина R(rc , h, f0 ) для неуста­новившегося притока качественно опи­сывает С1 (rc , h) для установившегося, и ее численное значение при любом вскры­тии пласта всегда меньше численного значенияС1 (rc , h) при установившемся притоке.

3. Полученное аналитическое реше­ние для неустановившегося притока сжимаемой жидкости (газа) к несовер­шенной скважине в бесконечном по про­тяженности пласте преобразовано в прямолинейную анаморфозу, которая позволяет эффективно интерпретировать кривые восстановления забойного дав­ления.

4. Выбор fo, дающего значения Dp* i,j (rc )=1, не влияет на протяжен­ность нелинейного участка, соответст­вующего неустановившемуся движению, на графики зависимостиDp* i,j (rc ) от ln(1/f0i ).

ЛИТЕРАТУРА

1. Т е л к о в В. А. Приток к точечному стоку в пространстве и к линии стоков в полу бесконечном пласте. НТС. Вып. 30, Уфа, 1975.

2. Л е о н о в В. И„ Телков В. А., Каптелинин Н. Д. Сведение задачи неустановившегося притока сжимаемой жидкости (газа) к несовершенной скважи­не к решению уравнения пьезопроводности. Тезисы докладов на XIII научно-техниче­ском семинаре по гидродинамическим ме­тодам исследований и контролю процессов разработки нефтяных месторождений. Пол­тава, 1976.

3. Б а х в а л о в Н. С. Численные мето­ды. Изд-во «Наука», М., 1974.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита07:08:35 02 ноября 2021
.
.07:08:34 02 ноября 2021
.
.07:08:34 02 ноября 2021
.
.07:08:33 02 ноября 2021
.
.07:08:33 02 ноября 2021

Смотреть все комментарии (21)
Работы, похожие на Курсовая работа: Анализ функции фильтрационного сопротивления для неустановившегося притока жидкости (газа) к несовершенной скважине

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(294402)
Комментарии (4230)
Copyright © 2005 - 2024 BestReferat.ru / реклама на сайте