Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Фрактальная размерность стримерных каналов

Название: Фрактальная размерность стримерных каналов
Раздел: Рефераты по науке и технике
Тип: реферат Добавлен 01:30:48 14 августа 2004 Похожие работы
Просмотров: 250 Комментариев: 21 Оценило: 4 человек Средний балл: 5 Оценка: неизвестно     Скачать

Балханов Василий Карлович

Бурятский НЦ СО РАН, г. Улан-Удэ

Тремя независимыми методами измерена фрактальная размерность плоскостной проекции стримерных каналов. На основе фрактального исчисления скейлинговые показатели полной длины внутри выделенной области и числа ветвлений стримерных каналов выражаются через фрактальную размерность.

Введение. В последнее время активизировалось изучение стримерных разрядов - сети каналов, возникающих при электрическом пробое в диэлектриках (воздухе, полимерных изоляторах, фотоэмульсии) [1,2]. Изучение стало особенно актуальным в связи с использование кабелей с полимерной изоляцией [2]. Однако отмечается, что количественной теории, описывающей рост ветвления электрического пробоя, до сих пор нет. В статье геометрическую конфигурацию разрядных каналов, рост числа каналов, их ветвление предложено рассматривать как фрактальные разветвленные объекты и описывать их количественно с помощью понятия фрактальной размерности [3-5]. Электрический пробой - видимый в оптическом диапазоне стримерный канал в диэлектриках, образованный локально растущим электрическим полем. Пробой возникает, когда на небольшой участок удаленной от заряженной подложки подается такое высокое напряжение, что происходит собственно электрический пробой. Под такое определение подходят разряды молний в воздухе, частичные разряды в эпоксидной смоле, плазменные структуры в фотоэмульсии. В указанном смысле стримерные каналы относятся к классу универсальности, зависящие только от двух безразмерных величин: фрактальной размерности и размерности пространства, в котором происходит процесс. М.Д. Носковым и др. [2] прямым измерением, было определено, что фрактальная размерность D частичных разрядов лежит в пределах 1.45 ¸ 1.55. Н.А. Поповым [1] определялась фрактальная размерность коронного разряда, им получено, что D = 2.16 0.05. Для разряда молний также измерялась фрактальная размерность, при этом установлено, что на масштабах от десятков метров и выше D = 1. Видим существенное различие в значениях для размерности. В связи с этим в статье тремя независимыми методами измерена фрактальная размерность планового рисунка системы стримерных каналов (рис. 1) [1].

Рис. 1. Система микроразрядов, пересекающих диэлектрическую фотопластинку [1].

Используемые методы являются результатами фрактального исчисления [6], основы последнего для связности изложения представлены в следующей части. Изложение в статье теории фрактального исчисления также связано с тем, что начиная с первых книг Б. Мандельброта и кончая научными работами последнего времени, пишут "- структуры, обладающие в том или ином смысле пространственным самоподобием -". Мы дадим замкнутую систему аксиом фрактального исчисления, и теперь не нужно будет говорить "- в том или ином смысле -".

Аксиомы фрактального исчисления. Фрактальная геометрия, открытая Б. Мендельбротом 30 лет назад, основывается на экспериментальном факте, что в общем случае длина L произвольной кривой (которая может быть изломана в любой точке) степенным образом зависит от масштаба измерения d :

L = Cd1- D . (1)

Здесь С - типичный для фрактальной геометрии размерный множитель, свой для каждой кривой, D - фрактальная размерность. Для обычных, гладких линий D = 1 и получаем "истинную" длину. Если кривая плотно заполняет всю плоскость (простой пример - броуновская траектория), то для нее D = 2. Формулу легко проверить, нарисовав синусоподобную линию и, меняя раствор циркуля, измерить длину такой линии. С появлением формулы Мандельброта (1) сразу же было осознано, что фрактальные линии масштабно - инварианты (самоподобны). Самоподобие означает, что как вся линия, так и любой ее участок обладают одной и той же размерностью. Если линию увеличить в l раз, то для измерения новой длины lL достаточно использовать масштаб, равный ld, т.е.

lL = C(ld ) 1- D . (2)

Формулы Мандельброта и условие самоподобия в форме (2) достаточно взять в виде аксиом фрактального исчисления, тогда чисто логическим путем можно получить практически все известные на последнее время результаты. Мы их применим к "разветвленным структурам", к которым относятся и сети стримерных каналов.

Разветвленные структуры. Для построения разветвленных структур возьмем линию и разрежем ее на множество неравнозначных отрезков. Разбросав эти отрезки по плоскости, мы как раз и получаем пример искомых структур. Проведем в (2) замену обозначений, это аналогично тому, что шестиметровую длину сначала измеряем двухметровым масштабом, укладывая ее три раза. Но можно использовать трехметровый масштаб, прикладывая ее только два раза. Итак, переобозначим l на 1/R, где R считаем линейным размером выделяемой области. Тогда из (2) получаем
L = C×d1- D ×RD . Убрав все неопределенные масштабные множители, находим:

L ~ R D . (3)

Применение формулы (3) к определению фрактальной размерности разветвленных структур состоит в следующем. На плановом рисунке стримерных каналов выделяется некоторая область (на рис. 1 это окружность радиусом R), и подсчитывается общая длина всех каналов, попадающих в рассматриваемую область. Так мы получаем первые значения L1 и R1 . Далее выделяется другая область (чуть больше первоначальной), и после подсчета получаются другие значения L2 и R2 . Таким образом, в итоге мы получаем набор значений L и R, по которым методом линейной регрессии строим прямую на осях LnL и LnR. Угловой коэффициент будет равняться фрактальной размерности D. Таким образом было установлено, что для стримерных каналов

D = 1.52 0.03.

Для улучшения статистики нами выбирались разные формы областей разбиения - от прямоугольных до круглых, а также менялось и само число таких разбиений.

Здесь мы изложили первый из используемых методов измерения фрактальной размерности. Второй метод измерения состоит в подсчете числа N пересечений ветвлениями стримерных каналов периметра области. На рис. 1 границей выделенной области является окружность радиусом R. Легко сосчитать, что для изображенного на рисунке случая N = 53. Варьируя радиус R, находим, что N и R связаны степенным (скейлинговым) законом:

N~Rn , (4)

с показателем n = 1.012 0.05. Аппарат фрактального исчисления [6] позволяет связать n с размерностью D, именно:

n = 2 (D -1). (5)

Качественно результат можно обосновать следующим образом. Для обычных дифференцируемых линий число N не должно зависеть от R, т.е. при D = 1 должно быть n = 0. Если линия заполняет всю плоскость, т.е. D = 2, то N будет квадратично зависеть от области, т.е. n = 2. Предполагая линейную зависимость между n и D, приходим к результату (5). При строгом подходе необходимо использовать понятие фрактальной производной, в данном случае от степенной функции (3) с нормирующим множителем 1/R2 :

.

А это и есть формула (4) с показателем (5). Теперь находим D = 1 + n / 2 = 1.506 0.005.

Приступим к третьему методу измерения величины D. Метод основан на анализе графика на рис. 2 [2], где представлена зависимость роста границы канальных лучей от

Рис. 2 Зависимость длины дендрита от времени роста. Сплошная кривая - эксперимент, штриховая - моделирование.

времени. Пропорционально со временем увеличивается и число ветвлений, т.е. N~t и из (4) следует, что

R~t1/ n . (7)

На интервале времен от 1 мин до 6 мин из рис. 2 следует, что R~t0.943 , откуда n = 1.06 и D = 1.53.

Обсуждение. Тремя независимыми методами получена фрактальная размерность плоскостной проекции стримерных каналов, представленных на рис. 1. Полученные значения 1.53, 1.52 и 1.52 совпадают с данными работы [2]. Согласованность значений для размерности указывает на работоспособность предложенных выше аксиом фрактального исчисления. Подобной рис. 2 имеется и результат в работе [1], где полечен следующий закон для числа ветвления: N~R1.18 . Из него следует, что D = 1.59, т.е. близкая к нашим значениям размерность. Из энергетических соображений Н.А. Поповым [1] приведено D = 2.16, отличие этого значения от 1.59 указывает, что величина D = 2.16 относится только к скейлинговому показателю и еще предстоит задача связать ее с фрактальной размерностью.

Полученный в работах [1,2] и нами усредненный результат D = 1.53 указывает на выполнение закона класса универсальности для электрических разрядов в различных диэлектрических средах.

Список литературы

Попов Н.А. Исследование пространственной структуры ветвящихся стримерных каналов коронного разряда // Физика плазмы, 2002, том 28, ¦ 7, с. 664-672.

Носков М.Д., Малиновский А.С., Закк М., Шваб А.Й. Моделирование роста дендритов и частичных разрядов в эпоксидной смоле // ЖТФ, 2002, том 72, вып. 2, с. 121-128.

Федер Е. Фракталы. - М.: Мир, 1991, 254 с.

Шредер М. Фракталы, хаос, степенные законы. - Ижевск: НИЦ "Регулярная и хаотическая динамика", 2001, 528 с.

Божокин С.В., Паршин Д.А. Фракталы и мультифракталы. - Ижевск: НИЦ "Регулярная и хаотическая динамика", 2001, 128 с.

Балханов В.К. Введение в теорию фрактального исчисления. - Улан-Удэ.: Изд. Бурятского гос. ун-та, 2001, 58 с.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита20:25:36 01 ноября 2021
.
.20:25:34 01 ноября 2021
.
.20:25:34 01 ноября 2021
.
.20:25:33 01 ноября 2021
.
.20:25:33 01 ноября 2021

Смотреть все комментарии (21)
Работы, похожие на Реферат: Фрактальная размерность стримерных каналов

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(294399)
Комментарии (4230)
Copyright © 2005 - 2024 BestReferat.ru / реклама на сайте