Васюков С. А.
В поплавковых маятниковых акселерометрах, работающих в компенсационном режиме, подвижная система содержит два цилиндрических поплавка, которые служат для обеспечения гидростатической разгрузки. Поверхности поплавков могут быть использованы в качестве роторов электростатических подвесов, выполняющих роль дополнительных прецизионных элементов центрирования подвижной системы.
В отличие от вакуумных подвесов, в поплавковых физическое демпфирование реализуется посредством вязкой жидкости, что облегчает достижение устойчивого взвешивания. Подвижная система, охваченная обратной связью по измерительной оси, практически не совершает разворотов вокруг этой оси. Конечно, и в этом случае имеет место воздействие электростатического подвеса на точностные характеристики прибора через возмущающий момент на измерительной оси, однако возможность высококачественного изготовления цилиндрического ротора подвеса существенно снижает влияние этого момента и делает его вклад в уравнения движения вокруг этой оси пренебрежимо малым.
Задача по определению гидродинамических сил и моментов, которые действуют на цилиндрический поплавок при его движении в вязкой жидкости, наиболее полно исследована в работе Никитина Е. А. [1]. Математическая модель, рассмотренная в [1], представляла собой связанную задачу гидродинамики, включающую в себя задачу гидродинамики в цилиндрической щели и две разные задачи гидродинамики в торцевых щелях, состоящие из уравнений Навье-Стокса и неразрывности. К ним добавлялись условия согласования давления и расхода жидкости при переходе из цилиндрической щели в торцевую щель и соответствующие граничные условия.
Известно, что гидродинамическую силу можно представить в виде
(1)
где и присоединенная масса и коэффициент линейного демпфирования. В [1] были получены аналитические выражения для осевого (2) и радиального (3) движений поплавка
(2)
(3)
где - динамическая вязкость, - плотность жидкости, , , , - размеры поплавкового узла, рис. 1.
Экспериментальные исследования на опытных образцах приборов с электростатическими подвесами показали, что времена центрирования (всплытия с упоров) поплавковых узлов значительно меньше, чем расчетные с использованием выражений (2) и (3). Это можно объяснить завышенными расчетными значениями коэффициентов демпфирования.
Попытка уточнения коэффициентов демпфирования, присоединенных масс и моментов инерции для конструкций с малыми (порядка 50 мкм) зазорами была предпринята в работе [2]. Однако в этом случае расчетные соотношения отличались от экспериментальных значений в 2 – 3 раза в меньшую сторону.
В ряде работ С. А. Анциферова и Л. И. Могилевича, в частности в [3] произведено уточнение значений гидродинамических сил за счет учета несимметричного истечения жидкости в торцевые щели.
Чем же можно объяснить значительное расхождение теоретических и экспериментальных результатов. Очевидно тем, что в расчетных моделях рассматривалось идеализированное движение цилиндрического поплавка в цилиндрической камере, и было невозможно учесть сложность конкретных конструкций поплавковых узлов и наличие дополнительных каналов перетекания жидкости.
В связи с этим, более достоверными оказываются данные об этих параметрах, полученные при испытаниях опытных образцов приборов. Ниже предлагается способ экспериментального определения коэффициентов углового и линейного демпфирования при воздействии принудительной знакопеременной силы в электростатическом подвесе.
Пусть система электродов цилиндрического электростатического подвеса ориентирована относительно правой ортогональной системы координат, как показано на рис. 1.
Введем неподвижную систему координат , жестко скрепленную с корпусом прибора, начало которой помещено в центре подвеса, и подвижную , скрепленную с поплавком. Тогда уравнения движения цилиндрического ротора, взвешенного в жидкости, с учетом допущений, продиктованных условиями работы поплавковых маятниковых приборов, примут вид:
Рис. 1
а) для горизонтального положения оси прибора
(4)
б) для вертикального положения оси прибора
(5)
где - силы и моменты электростатического подвеса,
- гидродинамические силы и моменты,
- возмущающие силы и моменты,
- архимедова сила, - момент маятника, - момент дифферента,
- момент, создаваемый системой обратной связи вокруг измерительной оси прибора.
Для дальнейшего анализа уравнений движения необходимо представить силы и моменты в правых частях уравнений (4) и (5) в форме, раскрывающей их зависимость от линейных и угловых координат.
Для оценки величины линейного демпфирования рассмотрим уравнение движения поплавка по оси y только под действием электростатической силы и остаточного веса:
(6)
где - полная (с учетом присоединенной) масса, - остаточный вес (неплавучесть).
Перед началом эксперимента проведем центрирование в электростатическом подвесе так, чтобы выставить в среднее положение цапфы поплавков в камниевых опорах, рис. 1. Другими словами, с помощью подвеса обеспечивается одинаковый зазор между поверхностью цапфы и верхним и нижним камниевым упором. Введем в канал y подвеса низкочастотный периодический сигнал, заставляющий поплавок совершать принудительные движения от верхнего упора к нижнему упору и наоборот. Как видно из рис. 2, при движении в одном направлении сила подвеса складывается с силой остаточного веса,
а при движении в другом направлении вычитается.
Рис. 2
Так как полный ход цапфы от упора до упора мал (порядка 5 мкм), то можно считать силу, создаваемую подвесом на всем участке принудительного движения постоянной, и в этом случае решение уравнения (6) принимает вид
(7)
Пренебрегая малой постоянной времени , запишем
(8)
На рис. 3 схематично показано принужденное движение поплавка от нижнего упора к верхнему за время и в обратном направлении за время . Полный ход при этом равен .
Рис. 3
Из (8) при соответствующих начальных условиях можно найти
(9)
Уравнения (9) могут быть разрешены или относительно , или относительно .
(10)
Методики определения остаточного веса для температуры при которой проводился эксперимент (при известной температуре балансировки подвижной системы) хорошо известны. Следовательно, измеряя времена и , можно вычислить . Вычисления возможны также, если рассчитать силу подвеса . Так, для импульсного электростатического подвеса с опорным напряжением на электродах , измерения через остаточную неплавучесть при , дали результат,
А вычисления через силу подвеса показали
При измерениях демпфирования по оси x (не весовая ось) при
, что дает хорошее совпадение результатов.
Измерения, проведенные для осевого канала z, при выставке оси z как весовой, показали
Если же ось z не весовая, то
Для нахождения углового демпфирования ось подвеса z устанавливается в вертикальное положение и к поплавку прикладывается знакопеременный принуждающий электростатический момент. Здесь, так же как и в предыдущем случае, устанавливается разность интервалов времени и , причем в интервале момент электростатических сил складывается с моментом маятника, а в интервале их величины вычитаются
где и - момент маятника и угловой люфт цапфы поплавка.
Переходные процессы, вычисленные по уравнениям движения с учетом демпфирований, определенных по вышеприведенной методике, с хорошей степенью точности (порядка 10%) совпадают с экспериментальными результатами. Это позволяет сделать вывод о возможности и правомерности применения данной методики при исследовании динамики поплавковых приборов.
Список литературы
1. Никитин Е. А., Пилюгина Н. Н. Гидродинамические силы и моменты, действующие на поплавок при его движении относительно поплавковой камеры. Труды МВТУ им. Н. Э. Баумана. – 1982. - № 372.-С. 4-25.
2. Васюков С. А., Грибова С. Н., Дробышев Г. Ф. Наклономер с электростатическими опорами. Труды МВТУ им. Н. Э. Баумана. – 1985. - № 485.-С. 82.
3. Анциферов С. А., Могилевич Л. И. Гидродинамические силы, действующие на поплавок маятникового акселерометра при несимметричном истечении жидкости. Авиакосмическое приборостроение.-2003.-№11.-С.19-26.
|