Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Эффективные характеристики случайно неоднородных сред

Название: Эффективные характеристики случайно неоднородных сред
Раздел: Рефераты по науке и технике
Тип: реферат Добавлен 01:40:06 21 марта 2008 Похожие работы
Просмотров: 39 Комментариев: 24 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно     Скачать

Введение

Решающую роль в восприятии окружающего мира играют характеристики, сохраняющиеся (в замкнутых системах). Среди них имеются такие универсальные, как масса, количество движения, момент количества движения, энергия и энтропия.

В учении о теплообмене рассматриваются процессы распространения теплоты в твердых, жидких и газообразных телах. Эти процессы по своей физико-механической природе весьма многообразны, отличаются большой сложностью и обычноразвиваются в виде целого комплекса разнородных явлений.

Перенос теплоты может осуществляться тремя способами: теплопроводностью, конвекцией и излучением, или радиацией. Эти формы глубоко различны по своей природе и характеризуются различными законами.

Процесс переноса теплоты теплопроводностью происходит между непосредственно соприкасающимися телами или частицами тел с различной температурой. Учение о теплопроводности однородных и изотропных тел опирается на весьма прочный теоретический фундамент. Оно основано на простых количественных законах и располагает хорошо разработанным математическим аппаратом. Теплопроводность представляет собой, согласно взглядам современной физики, молекулярный процесс передачи теплоты.


При определении переноса теплоты теплопроводностью в реальных телах встречаются известные трудности, которые на практике до сих пор удовлетворительно не решены. Эти трудности состоят в том, что тепловые процессы развиваются в неоднородной среде, свойства которой зависят от температуры и изменяются по объему; кроме того,трудности возникают с увеличением сложности конфигурации системы.

Уравнение теплопроводности имеет вид:

(1)

выражает тот факт, что изменения теплосодержания определенной массы вещества, заключенного в единице объема, определяется различием между притоком и вытеканием энергии - дивергенцией плотности теплового потока , при условии что внутренних источников энергии нет. Тепловой поток пропорционален градиенту температуры и направлен в сторону ее падения; - коэффициент теплопроводности.

При разработке методов иследования композиционных материалов весьма трудно и, по-видимому, не имеет смысла (в тех случаях, когда это можно практически реализовать) полностью учитывать структуру копмозита. В связи с этим возникла необходимость связать механику композитных материалов с механизмами элементов конструкций, развивающимися обычно в рамках континуальных процессах. Эта задача решается в процессе создания теории определения приведенных свойств композитных материалов различных структур (слоистые, волокнистые и др.), при описании их поведения в рамках континуальных представлений. Таким образом совершается переход от кусочно-однородной среды к однофазной.

Рассмотрим двухфазный композитный материал, представляющий собой матрицу, в которой случайным образом распределены включения второй фазы (армирующий элемент), имеющий приблизительно равноосную форму. Количество включений достаточно велико на участке изменения температуры. Пусть некая характеристика матрицы - , а включений - . Тогда можно представить композит, как новый материал, с характеристиками промежуточными между характеристиками матрицы и включений, зависящей от объемной доли этих фаз.

, (2)

Где

Подстановка (2) в (1) дает:

(3)

Имеем операторы:

(4а)

(4б)

После преобразования Фурье получаем

Уравнение для функции Грина и

где (5)

- ур. Дайсона. (6)

Функция Грина описывает однородный материал со средними характеристиками определяемые по правилу смесей (2), а оператор можно назвать оператором возмущения, поскольку он определяет форму и расположение неоднородностей.

Решим уравнение итерациями

Вычислим сначала

Здесь

(7)

Теперь определим

Теперь необходимо вычислить

Таким образом

(8)

Подставляем в (6) равенство (8)

, где и (9)

Подставляем (5) в (9)

где и

(10)

(11)

где , (12)

(13)

1. Ограничимся первым приближением

`

(14)

Рассмотрим:

(15)

2. Ограничимся вторым приближением

(16)

(17)

Из (12) найдем:

(18)

Подставляя (18) с учетом (16) в (10), получим:

(19)

Теперь подставляем (19) с учетом (16) в (13), получим:

Коэффициентами при , из-за малости произведения пренебрегаем

А коэффициенты без обращаются в из-за (14)

подставляя (17), найдем

(20)

Подставляя (18) в (11)с учетом (16), получим:

(21)

Теперь подставляем (21) с учетом (16) в (13), получим:

Коэффициентами при , из-за малости произведения пренебрегаем

А коэффициенты без обращаются в из-за (15)

(22)

3. Ограничимся третьим приближением

(23)

Подставляя (18) с учетом (23) в (10), получим:

(24)

Теперь подставляем (24) с учетом (23) в (13), получим

Коэффициентами при ,, из-за малости произведения пренебрегаем

А коэффициенты без обращаются в из-за (14), а с- из-за (18)

(25)

Подставляя (18) в (11)с учетом (23), получим:

(26)

Теперь подставляем (26) с учетом (23) в (13), получим:

Коэффициентами при ,, из-за малости произведения пренебрегаем

А коэффициенты без обращаются в из-за (15), а с- из-за (22)

(27)

Анализ и показывает, что и дейсвительные коэффициенты, а - мнимые.

Список литературы:

1. Т. Д. Шермергор “Теория упругости микронеоднородных сред” М., “Наука”, 1977.

2. Г.А. Шаталов “Эффективные характеристики изотропных композитов как задача многих тел”

МКМ, №1, 1985.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита06:48:10 02 ноября 2021
.
.06:48:09 02 ноября 2021
.
.06:48:08 02 ноября 2021
.
.06:48:08 02 ноября 2021
.
.06:48:07 02 ноября 2021

Смотреть все комментарии (24)
Работы, похожие на Реферат: Эффективные характеристики случайно неоднородных сред

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(294399)
Комментарии (4230)
Copyright © 2005 - 2024 BestReferat.ru / реклама на сайте