Колегаева Елена Михайловна, доцент кафедры математических методов и информационных технологий ДВАГС
I. Преобразование иррациональных выражений.
Иррациональным называется выражение, содержащее корни n-ой степени.
1) Одно из типичных преобразований иррациональных выражений – избавление от иррациональности в знаменателе.
а) Если в знаменателе стоит выражение вида , то необходимо числитель и знаменатель умножить на сопряженное к нему выражение . В этом случае применяется формула .
б) Если в знаменателе стоит выражение (или ), то числитель и знаменатель умножается, соответственно, на (или ). В этом случае применяются формулы
,
.
Пример 1. Избавиться от иррациональности в знаменателе:
а) ; б) ; в) ; г) ; д) ; е) .
Решение:
а) ;
б) ;
в) ;
г) ;
д) ;
е) 
.
Отметим еще одно свойство:

которое часто применяется в преобразованиях.
Пример 2. Упростить выражение:
а) ; б) ; в) .
Решение:
а) , т.к. .
б) , т.к. .
в) 
.
Выясним, при каких n выражения под знаком модуля меняют знак: n=-1, n=1, n=0.1) Если n<-1, то

2) Если -1£n<0, то

3) Если 0<n<1, то

4) Если n³1, то

Ответ: 
II. Иррациональные уравнения.
Рассмотрим уравнение вида .
Основной метод решения – возведение обеих частей уравнения в степень n. При этом, если n – четное, то могут возникнуть посторонние корни. Поэтому в уравнениях необходимо делать проверку.
Если уравнение содержит два и больше корней, то один из корней «уединяется», то есть уравнение приводится к виду .
Еще один способ решения – введение вспомогательной переменной.
Пример 3. Решить уравнения:
а) ;
б) ;
в) ;
г) .
Решение:
а) Û ;



Проверка.
 Þ х=-4 – посторонний корень,
 – верно Þ х=2 – корень.
Ответ: х=2.
б) 







Проверка.
 – это выражение не существует, т.е.
– посторонний корень,
 – верно Þ – корень.
Ответ: .
в) 
Введем вспомогательную переменную Þ x2=t2–13
t2-13-2t=22; t2-2t-35=0,
t1=7; t2=-5.
Сделаем обратную замену:
Û х2+13=49 Û х2=36 Þ х=±6,
– не имеет решений.
Ответ: х=±6.
г) 
Сделаем замену переменной. Положим . Тогда уравнение примет вид:
Û Û

Þ Û Û Û .
Проверка показывает, что – корень.
Ответ: .
III. Решение иррациональных неравенств.
При решении этих неравенств следует помнить, что в четную степень можно возводить неравенства с неотрицательными членами.
Поэтому неравенство эквивалентно системам
или 
Неравенство равносильно системе
Забиваем Сайты В ТОП КУВАЛДОЙ - Уникальные возможности от SeoHammer
Каждая ссылка анализируется по трем пакетам оценки: SEO, Трафик и SMM.
SeoHammer делает продвижение сайта прозрачным и простым занятием.
Ссылки, вечные ссылки, статьи, упоминания, пресс-релизы - используйте по максимуму потенциал SeoHammer для продвижения вашего сайта.
Что умеет делать SeoHammer
— Продвижение в один клик, интеллектуальный подбор запросов, покупка самых лучших ссылок с высокой степенью качества у лучших бирж ссылок.
— Регулярная проверка качества ссылок по более чем 100 показателям и ежедневный пересчет показателей качества проекта.
— Все известные форматы ссылок: арендные ссылки, вечные ссылки, публикации (упоминания, мнения, отзывы, статьи, пресс-релизы).
— SeoHammer покажет, где рост или падение, а также запросы, на которые нужно обратить внимание.
SeoHammer еще предоставляет технологию Буст, она ускоряет продвижение в десятки раз,
а первые результаты появляются уже в течение первых 7 дней.
Зарегистрироваться и Начать продвижение

Пример 4. Решить неравенства:
а) б) 
в) г) 
Решение.
а) Û Û
Решим третье неравенство системы методом интервалов:
x2-5x-14>0
x2-5x-14=0
 
(x-7)(x+2)>0

Найдем пересечение решений трех неравенств:Ответ: -18£x<-2.
б) 
если х-1£0, то неравенство верно, то есть х£1;
если x-1>0 и так как x2+1>0, возводим обе части в квадрат. Имеем:
Û Û x>1.
Объединяем два решения, получим х – любое.
Ответ: х – любое.
в) 
Û Û Û
Û Û

Ответ: х³1.
г) 


или 
 
 
Û х³3    
Ответ: .
Задачи для самостоятельного решения
Уважаемые ребята, ниже приводятся задания для самостоятельного решения, которые следует выполнить, оформить отдельно от заданий по другим предметам и выслать в адрес Хабаровской краевой заочной физико-математической школы.
Наш адрес: 680000, г. Хабаровск, ул. Дзержинского, 48, ХКЦТТ ( ХКЗФМШ).
М11.9.1. Упростить:
1) 2) 3) 
4) , если , m>0, 0<n<1.
М11.9.2. Решить уравнения
;
;
;
.
М11.9.3. Решить неравенства:
;
;
;
.
|