.
Волновые свойства света, обнаруживаемые в явлениях интерференции и дифракции, и корпускулярные свойства света, проявляющиеся при фотоэффекте и эффекте Комптона, кажутся взаимно исключающими друг друга. Однако такие противоречия существовали лишь в классической физике. Квантовая теория полностью объясняет с единых позиций все свойства света. Характерной чертой квантовой теории света является объяснение всех явлений, в том числе и тех, которые ранее казались объяснимыми лишь с позиций волновой теории. Например, явления интерференции и дифракции света квантовая теория описывает как результат перераспределения фотонов в пространстве.
Распределение фотонов в пучках света при интерференции и дифракции описывается статистическими законами, дающими те же результаты, что и волновая теория. Однако торжество современной квантовой теории в объяснении всех световых явлений не означает, что никаких волн в природе нет.
Волновые свойства электрона.
Полному отказу от волновых представлений о природе света препятствуют не только сила традиции, удобство волновой теории и трудность современной квантовой теории. Есть и более серьезная причина. В 1924 г. французский физик Луи де Б рой ль впервые высказал идею, согласно которой одновременное проявление корпускулярных и волновых свойств присуще не только свету, но и любому другому материальному объекту. Эта идея была лишь теоретической гипотезой, так как в то время наука не располагала экспериментальными фактами, которые бы подтверждали существование волновых свойств у элементарных частиц и атомов. В этом заключалось существенное отличие гипотезы де Бройля о волновых свойствах частиц от гипотезы Эйнштейна о существовании фотонов света, выдвинутой им после открытия явления фотоэффекта.
Гипотеза де Бройля
существовании волн материи была детально разработана, и полученные из нее следствия могли быть подвергнуты экспериментальной проверке. Основное предположение де Бройля заключалось в том, что любой материальный объект обладает волновыми свойствами и длина волны связана с его импульсом таким же соотношением, каким связаны между собой длина световой волны и импульс фотона. Найдем выражение, связывающее импульс фотона р с длиной волны света . Импульсфотона определяется формулой:
P=mc(1)
Л. Де Бройль
рис.1 рис. 2
Из уравнения
Е=
m
с2
=
hv
(2)
можно определить массу фотона:
(3)
Учитывая это, можно формулу преобразовать так:
(4)
Отсюда получаем для длины световой волны формулу:
(5)
Если это выражение справедливо, как предположил де Бройль, для любого материального объекта, то длина волны тела массой т, движущегося со скоростью v, может быть найдена так:
(6)
Первое экспериментальное подтверждение гипотезы де Брой-ля подучили в 1927 г. независимо друг от друга американские физики К. Д. Дэвиссон и Л. X. Джермер и английский физик Д. П. Томсон. Дэвиссон и Джермер изучали отражение электронных пучков от поверхности кристаллов на установке, схема которой изображена на рисунке 1. Перемещая приемник электронов по дуге окружности, центр которой находится в месте падения электронного пучка на кристалл, они обнаружили сложную зависимость интенсивности отраженного пучка от угла рис. 2. Отражение излучения только под определенными углами означает, что это излучение представляет собой волновой процесс и его избирательное отражение есть результат дифракции на атомах кристаллической решетки. По известным значениям постоянной кристаллической решетки и dугла дифракционного максимума можно по уравнению Вульфа — Брэггов
2d sin=k
вычислить длину волны дифрагировавшего излучения и сопоставить ее с дебройлевской длиной волны электронов , вы численной по известному ускоряющему напряжению U:
Вычисленная таким образом из опытных данных длина волны совпала по значению с дебройлевской длиной волны.
Интересны результаты другого опыта, в котором пучок электронов направлялся на монокристалл, но расположение приемника и кристалла не изменялось. При изменении ускоряющего напряжения, т. е. скорости электронов, зависимость силы тока через гальванометр от ускоряющего напряжения имела вид, представленный на рисунке 3. Электронный пучок испытывал наиболее эффективное отражение при скоростях частиц, удовлетворяющих - условию дифракционного максимума.
Последующие эксперименты полностью подтвердили правильность гипотезы де Бройля и возможность использования уравнения (6) для расчета длины волны, связанной с любым материальным объектом. Обнаружена дифракция не только элементарных частиц (электрон, протон, нейтрон), но и атомов.
Выполнив расчеты длины дебройлевской волны для различных материальных объектов, можно понять, почему мы не замечаем в повседневной жизни волновых свойств окружающих нас тел. Их длины волн оказываются столь малыми, что проявление волновых свойств невозможно обнаружить. Так, для пули массой 10 г, движущейся со скоростью 660 м/с, длина дебройлевской волны равна:
Дифракция электронов на решетке кристалла никеля становится заметной лишь при таких скоростях движения электронов, при которых их дебройлевская длина волны становится сравнимой с постоянной решетки.
рис. 3 рис. 4
При этом условии дифракционная картина, получаемая от электронного пучка, становится подобной картине дифракции пучка рентгеновских лучей с такой же длиной волны. На рисунке 4 представлены фотографии дифракционных картин, наблюдающихся при прохождении пучка света (а) и пучка электронов (б) у края экрана.
Гипотеза де Бройля и атом Бора. Гипотеза о волновой природе электрона позволила дать принципиально новое объяснение стационарным состояниям в атомах. Для того чтобы понять это объяснение, выполним сначала расчет длины дебройлевской волны электрона, движущегося по первой разрешенной круговой орбите в атоме водорода. Подставив в уравнение (6) выражение для скорости электрона на первой круговой орбите, получим:
(7)
Это значит, что в атоме водорода, находящемся в первом стационарном состоянии, длина дебройлевской волны электрона в точности равна длине его круговой орбиты! Для любой другой орбиты с порядковым номером п получаем:
(8)
Этот результат позволяет выразить постулат Бора о стационарных состояниях в такой форме: электрон вращается вокруг ядра неопределенно долго, не излучая энергии, если на его орбите укладывается целое число длин волн де Бройля.
Такая формулировка постулата Бора соединяет в себе одновременно утверждение о наличии у электрона волновых и корпускулярных свойств, отражая его двойственную природу. Соединение волновых и корпускулярных свойств в этом постулате происходит потому, что при расчете длины волны электрона используется модуль скорости , полученный при расчете движения электрона как заряженной частицы по круговой орбите радиуса r.
Взаимные превращения света и вещества.
Глубокое единство двух различных форм материи — вещества в виде различных элементарных частиц и электромагнитного поля в виде фотонов — обнаруживается не только в двойственной корпускулярно-волновой природе всех материальных объектов, но главным образом в том, что все известные частицы и фотоны взаимно превращаемы.
Самый известный пример взаимных превращений частиц — это превращение пары электрон — позитрон в два или три гамма-кванта. Этот процесс наблюдается при каждой встрече электрона с позитроном и называется аннигиляцией (т.е. исчезновением). При аннигиляции строго выполняются законы сохранения энергии, импульса, момента импульса и электрического заряда (электрон и позитрон обладают равными зарядами противоположного знака), но материя в форме вещества исчезает, превращаясь в материю в форме электромагнитного излучения.
Процесс, обратный аннигиляции, наблюдается при взаимодействии гамма-квантов с атомными ядрами. Гамма-квант, энергия которого превышает энергию покоя Ео=2m0
c2
пары элект
рон — позитрон
, может превратиться в такую пару.
Таким образом, материя не только многообразна в своих формах, но и едина в своей сущности. Разделение материальных объектов на отдельные группы и виды условно и относительно.
|