Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Статья: Особенности диффузии некоторых переходных металлов в сплавах никеля

Название: Особенности диффузии некоторых переходных металлов в сплавах никеля
Раздел: Рефераты по математике
Тип: статья Добавлен 15:46:07 24 марта 2007 Похожие работы
Просмотров: 430 Комментариев: 21 Оценило: 4 человек Средний балл: 5 Оценка: неизвестно     Скачать

Муллакаев М.С., Габитов Э.В.

В настоящее время существуют макро- и микроскопические теории диффузии. Макроскопическая теория основана на формализме, связанном с термодинамикой необратимых процессов, и выражения для потоков получают как функции термодинамических сил и параметров. В микроскопической теории вычисляют потоки, опираясь на механизмы, которые основаны на представлении об атомных скачках.

Единого универсального механизма диффузионных перемещений для различных материалов и всевозможных условий нет. Эти механизмы зависят от вида химической связи, типа и компактности решетки, температуры, при которой происходит диффузия, природы диффундирующей примеси и других факторов. Для исследования механизма диффузии обычно принимают ту или иную модель, теоретически рассчитывают коэффициент диффузии D и предэкcпоненциальный множитель D0, а затем сравнивают их с экспериментально измеренными величинами.

Попытки распространить модели, используемые при описании диффузии в разбавленных сплавах, на концентрированные сталкиваются с трудностью выбора правильного приближения из-за увеличивающегося числа неизвестных параметров [1]. И поэтому во многих моделях применяют приближение с использованием малого числа энергий парного взаимодействия для стабильной и седловинной конфигурации, чтобы описать влияние локального окружения на высоту потенциального барьера [2-3].

Как следствие, подобные модели позволяют вычислить только энергии активации, а не сами коэффициенты диффузии. Предэкспоненциальные множители неизвестны и произвольно считаются постоянными. Не учитываются эффекты корреляции, хотя зависимость частоты скачков от локального состава окружения нарушает трансляционную симметрию решетки. Взаимодействие атомов в рамках указанных моделей описывают с помощью парных энергий, и энергия сплава представляет собой сумму таких энергий, что несправедливо в случае переходных металлов. Очевидно, для того, чтобы описать изменение характера взаимодействия атомов с изменением концентрации сплава, необходимо использовать расчеты на основе электронной теории.

Согласно [4], в твердых растворах вблизи вакансий существуют градиенты электрических полей, которые достигают заметной величины на расстоянии 4-5 атомных сфер от точечного дефекта. От величины таких градиентов зависит форма кривой изменения потенциальной энергии вдоль пути диффузии, а следовательно, и параметры диффузионного процесса.

В работе [5] авторы приходят к выводу, что в неограниченных твердых растворах замещения переходных металлов, степень заполнения d-полосы, приводящая к изменению связи, коррелирует с изменением диффузионных характеристик. Однако авторы не учитывают возможность переноса заряда между сплавляемыми элементами, что также приводит к изменению характера сил связи в металлических сплавах.

Поэтому для достижения прогресса в микроскопической теории диффузии необходимо проведение ряда экспериментальных работ, где совместно рассматривались бы диффузионные параметры сплавов с особенностями их электронной структуры.

Оже-спектроскопия широко применяется для прямого исследования диффузионных процессов в тонких пленках. Если толщина слоев больше, чем диффузионная длина, то распределение атомов c (x, t) может быть описано функцией ошибок Гаусса [6]:

(1)

Первым шагом процедуры является построение измеренных профилей в линейном виде. Для этого экспериментальные точки переносят в другую систему координат, осью абсцисс которой является расстояние от поверхности (или время травления), а осью ординат - концентрация элементов в атомных процентах в единицах функции erfc. Такое построение будет успешным при выполнении следующих условий:

а) скорость травления будет постоянна в данной области;

б) отсутствует диффузия по границам зерен;

в) коэффициент диффузии не зависит от концентрации элементов.

Если исходный переходный слой достаточно тонкий, можно определить коэффициент диффузии из линеаризованного профиля. Поскольку 50 % erfc.(0.5)=24 %, то:

D=(x50 %-x24 %)2/t, (2)

где t - время диффузии.

Однако в реальных образцах такая ситуация практически не встречается. Исходные профили всегда имеют уширение, обусловленное влиянием ионной бомбардировки, влиянием границы раздела, шероховатостью поверхности и диффузией, предшествующей процессу измерения и т.д. В [7] показано, что в этом случае коэффициент диффузии можно определить, используя градиенты концентраций для исходного образца G0 и для отожженного Gt:

D=(4t)-1(Gt-2-Go-2), (3)

где G0 и Gt находят из экстраполяции профилей в линейном виде, используя тот факт, что y=Gx+0.5. Значения x (при у=0 и у=1) составляют x0=-0.5/G и x1=0.5/G. Отсюда G=(x1-x0)-1. При этих x:

G=(x0.895-x0.105)-1.

(4)

Таким образом, находя из рисунка значения расстояний, при которых концентрация становится 0.105 и 0.895, находим по [4] значения градиентов концентраций исходного и подвергнутого термообработке образцов. Далее из [3] вычисляем искомый коэффициент диффузии.

При взаимодействии никеля с переходными металлами, стоящими в начале соответствующих рядов, имеет место перенос заряда, приводящий к увеличению электронной плотности в 3d-зоне никеля. Поэтому в качестве легирующего элемента в никелевую матрицу вводился Та, с одной стороны, имеющий достаточно широкую область растворимости в никеле, а с другой - приводящий к значительному переносу заряда.

Как диффундирующие элементы были рассмотрены Co и Nb. Известно, что при взаимодействии Ni и Co сколько-нибудь заметного переноса заряда не происходит, в то же время в случае пары Ni-Nb, напротив, перенос заряда высок. Таким образом, в этих двух случаях мы имеем возможность определить влияние легирования, приводящего к заметному перераспределению электронной плотности, на диффузию элементов, природа химической связи которых с атомами металла-основы существенным образом отличается.

Рис. 1. Температурная зависимость коэффициентов диффузии (1 - Co в Ni; 2 - Co в Ni - 5 ат. % Ta).

Измерения коэффициентов диффузии проводились в диапазоне температур 5009000 С. Для диффузии Co в чистый никель энергия активации составила 1.64 эВ, а предэкспоненциальный множитель - 1.75.10-15 см2.с-1 (рис. 1). Легирование Ta приводило к уменьшению коэффициента диффузии во всем исследуемом температурном диапазоне. При этом энергия активации процесса была равной 1.86 эВ, а предэкспоненциальный множитель составлял 8.9.10-16 см2.с-1. Некоторое увеличение энергии активации можно объяснить ростом энтальпии образования вакансий в твердом растворе. Кроме того, замедление диффузионных процессов может происходить и вследствие того, что в отличие от связи Co-Ni связь Co-Ta, которая будет образовываться в процессе миграции атомов Co в твердом растворе, имеет значительную ионную составляющую. Для диффузии Nb в Никель были получены следующие данные: энергия активации диффузии равнялась 3.08 эВ, а предэкспоненциальный множитель - 4.3.10-16 см2.с-1 (рис.2).

Рис. 2. Температурная зависимость коэффициентов диффузии (1 - Nb в Ni; 2 - Nb в Ni - 5 ат. % Ta).

Характер наблюдаемых изменений параметров процесса диффузии при легировании никеля Ta заметным образом отличался от описанного выше. В этом случае наблюдалось увеличение коэффициента диффузии Nb во всем температурном диапазоне при введении в сплав Ta. При этом энергия активации и предэкспоненциальный множитель составили соответственно 2.92 эВ и 1.6.10-15 см2.с-1. Такое поведение, по всей видимости, связано с тем, что перенос электронов с атомов Nb в твердом растворе Ni-Ta меньше, чем в чистом никеле.

Это предположение подтверждается данными спектроскопических исследований [8]; отношение интенсивностей оже-переходов I(MVV)/I(MNN) в никеле составляет 1.52, а в твердом растворе Ni - 8 ат. % Ta эта величина равна 1.64.

Приведенные экспериментальные данные свидетельствуют, что легирование Ni танталом, приводящее к росту электронной плотности в 3d-зоне никеля, различным образом влияет на диффузию переходных металлов. В твердом растворе Ni-Ta наблюдается замедление диффузии атомов Со, химическая связь которого с Та имеет значительную ионную составляющую. В то же время уменьшение переноса заряда с атомов Nb, находящихся в твердом растворе Ni-Ta, приводит к росту скорости диффузии атомов Nb по сравнению с диффузией этого элемента в чистый никель.

Список литературы

Bocquet J.l. // These. Univ. Paris-Sud. V. 22. P. 77-81.

Caplain A., Chambron W. Energies de formation et demigration des iacunes fer-nickel de structure G.F.C. par la method l`anisotropie magntique induite // Acta Metall. V. 9. P. 1001-1019.

Radelaar S. // Phys. Stat. Sol. V. 27. P. 63.

Hafizuddin S., Mohapatra N.C. A first-princip les theory of the strain-effect electric field gradient in cubic metalas duento point defects // J. Phys. F Met. Phys. 1986. № 1. P. 217-232.

Процессы взаимной диффузии в сплавах / Под ред. К.П.Гурова. М.: Наука, 1973. 358 с.

Hall P.M., Morabito J.M. A formalism for extracting diffusion coefficient from concentration profiles // Surf. Sci. 1976. V. 54. № 1. P. 79-90.

Stefanou N., Oswald A., Zeller R., Dedetisch P.H. Charge and magnetization perturbations around impurities in nickel // Phys. Rev. B. 1987. V. 35. № 13. P. 6911-6922.

Абрамов В.О., Белоконов А.Н., Гуссейнов А.С., Муллакаев М.С., Ширков А.В. Влияние особенностей электронной и зеренной структуры на характер упрочнения твердых растворов никеля, легированного переходными металлами // Краткие сообщения по физике ФИАН. 1991. № 4. C. 41-45.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита05:00:42 02 ноября 2021
.
.05:00:40 02 ноября 2021
.
.05:00:40 02 ноября 2021
.
.05:00:39 02 ноября 2021
.
.05:00:39 02 ноября 2021

Смотреть все комментарии (21)
Работы, похожие на Статья: Особенности диффузии некоторых переходных металлов в сплавах никеля

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(294402)
Комментарии (4230)
Copyright © 2005 - 2024 BestReferat.ru / реклама на сайте