|
Таким образом, двухстадийная реакция гидроборирования - окисления в действительности представляет присоединение элементов воды H-OH по двойной углерод - углеродной связи. CH3 CH3
CH3 CH3 3,3-диметилбутен-1 3,3-диметилбутанол-1 (первичный) Реакция гидроборирования протекает против правила Марковникова. Что интересно, в реакциях гидроборирования не происходит перегруппировок (очевидно, потому, что в это случае не образуются карбониевые ионы), и, следовательно, метод может быть использован без осложнений, которые часто сопровождают другие реакции присоединения. Благодаря этому реакция гидроборирования - окисления приобретает большое синтетическое значение: она позволяет получать из алкенов спирты, которые недоступны другими методами; эти спирты служат исходными для синтеза многих соединений других классов. Синтезы спиртов с помощью металорганических соединений (синтезы Гриньяра). Спирты получают взаимодействием реактивов Гриньяра RMgX (где R: алкил; X: Cl, Br, I) или литий органических соединений Rli с альдегидами или кетонами. Образующиеся при этом алкоголяты при при обработке водой или разбавленными кислотами превращаются в соответствующие спирты. В зависимости от строения исходного карбонильного соединения можно получить первичный, вторичный или третичный спирт:
H H2 O
H Фрмальдегид
H Альдегиды (R’
R” R” Кетоны Примеры синтезов:
этилмагнийбромид H пропанол-1 метаналь (первичный спирт)
этилмагнийиодид H бутанол-2 этаналь (вторичный спирт) O OH
CH3 Метилмагний- пропанон 2-метилпропанол-2 хлорид (третичный спирт) Связь углерод- магний в реактиве Гриньяра сильно полярна, причём углерод яляется отрицательным относительно электроположительного магния. Поэтому не удивительно, что в результате присоединения к карбонильному соединению органическая группа образует связь с углеродом, а магний - с кислородом. Продукт представляет собой магниевую соль слабо кислого спирта и легко превращается в спирт при прибавлении более сильной кислоты - воды.
d - d + R R H+ спирт Mg2+ + X- + H2 O Поскольку образовавшийся в процессе реакции Mg(OH)X представляет собой желатинообразное вещество, с которым трудно работать, поэтому вместо воды обычно используют разбавленную минеральную кислоту (HCl, H2 SO4 ), так что образуются растворимые в воде соли магния. В аналогичном синтезе для получения первичных спиртов, содержащих на два атома углерода больше, чем исходный реактив Гриньяра, используют окись этилена.
O + 2 атома углерода Окись этилена Органическая группа опять связывается с углеродом, а магний - с кислородом, но при этом разрушается углерод - кислородная s-связь в сильно напряжённом трёхчленном кольце. Промышленные способы получения спиртов. Метиловый спирт в промышленности получают из оксида углерода и водорода в присутствии катализаторов. В разных условиях можно получить как чистый метиловый спирт 350 -400 ° C , 21,27 Мпа
катализатор так и смесь его первичных гомологов, начиная с этилового спирта (синтол). Метанол в больших масштабах получают гидрированием СО водородом примерно при 400°С и давлении 200 кгс/см2 над катализатором, представляющим собой смесь окиси хрома и окиси цинка. В производстве синтола в качестве катализатора применяют железо и кобальт и процесс ведут при давлении в несколько десятков атмосфер и повышенной температуре. 4. Общим методом синтеза спиртов с небольшим молекулярным весом (этиловый, изопропиловый, втор-бутиловый, трет-бутиловый) является гидратация олефинов в присутствии серной кислоты. В зависимости от строения олефина образуются вторичные и третичные спирты (из первичных спиртов таким путём можно получить только этиловый, R = H): H2 O
| | OSO3 H OH R R | H+ |
| / | R’ R ’OH Реакция начинается с атаки ионом водорода того углеродного атома, который связан с бóльшим числом водородных атомов и является поэтому более электроотрицательным, чем соседний углерод (правило Марковникова). После этого к соседнему углероду присоединяется вода с выбросом Н+ . Важный способ получения этилового спирта, известный с древнейших времён, заключается в ферментативном гидролизе некоторых углеводов, содержащихся в различных природных источниках (фрукты, картофель, кукуруза, пшеница и др.), например:
глюкоза Химические свойства спиртов Ряд химических свойств спиртов является общим для всех спиртов; имеются также и реакции, по-разному протекающие для первичных, вторичных и третичных спиртов. 1. Реакци с разрывом O -H связи Образование алкоголятов металлов. Алифатические спирты - слабые кислоты. Кислотность спиртов в зависимости от строения убывает в ряду: первичные > вторичные > третичные. При действии на спирты щелочных металлов, в частности натрия, происходит, хотя и менее бурно, взаимодействие, подобное реакции натрия с водой:
Такого типа металлические производные спиртов носят общее название алкоголяты (отдельные представители: метилат натрия СН3 ОNa, этилат натрия С2 Н5 ОNa). Их называют также алкоксидами (метоксид натрия, этоксид и т.д.). С увеличением молекулярной массы спирта реакционная способность их при взаимодействии с натрием уменьшается. Известны алкоголяты и других металлов, кроме щелочных, но они образуются косвенными путями. Так, щелочноземельные металлы непосредственно со спиртами не реагируют. Но алкоголяты щелочноземельных металлов, а также Mg, Zn, Cd, Al и других металлов, образующих реакционноспособные металлорганические соединения, можно получить действием спирта на такие металлорганические соединения. Например:
Алкоголяты спиртов широко применяют в органическом синтезе. Так как вода - более сильная кислота, чем спирты, то в присутствии воды алкоголяты разлагаются с выделением исходных спиртов:
Метилат натрия метанол Поэтому алкоголяты невозможно получить при действии гидроксидов металлов на спирты:
С другой стороны, спирты проявляют слабоосновные свойства, образуя с сильными кислотами более или менее устойчивые соли: H Br- ½
Оксониевые соли Образование сложных эфиров спиртов (реакция этерификации). При действии кислородных минеральных и органических кислот на спирты происходит реакция, которую можно представить следующими примерами: HO RO ½½
½½ HO HO HO RO ½½
½½ HO RO
║ H+ ║ R’OH ½½-H2 O
Карбоновая½½½ К-та R’-O+ ¾H R’-O R’-O O ║
Сложные эфиры Такого рода взаимодействие спирта с кислотами называется реакцией этерификации, а полученные вещества – сложными эфирами данного спирта и данной кислоты. Реакция этерификации спиртов сильными минеральными кислотами (такими как H2 SO4 ) протекает быстро и не требует использования катализаторов. С карбоновыми кислотами скорость реакции этерификации значительно увеличивается в присутствии катализаторов. В качестве последних обычно используют минеральные кислоты в небольших количествах. Внешне уравнение этой реакции подобно уравнению нейтрализации щёлочи кислотой: NaOH + HNO3 = NaNO3 + H2 O Однако глубоким различием этих реакций является то, что нейтрализация – ионная, неизмеримо быстро протекающая реакция, которая сводится, в сущности, к взаимодействию ионов: Н+ + ОН- → Н2 О Реакция этерификации идёт иным путём. Спирт в большинстве случаев реагирует, отдавая не гидроксил (как щёлочь при нейтрализации), а водород гидроксильной группы; кислоты (органические и некоторые, но не все, минеральные) отдают свой гидроксил. Этот механизм был установлен при помощи спирта, меченного изотопом кислорода 18 О. Как оказалось, при взаимодействии такого спирта с кислотами RCOOH выделяется обычная вода, а не Н2 18 О. Образование сложных эфиров при действии на спирты хлорангидридов неорганических и органических кислот . Взаимодействие хлорангидридов с первичными спиртами: ROH + ClN=O → RO─N=O + HCl 3ROH + PCl3 → (RO)3 P + 3HCl O O ║ ║ ROH + Cl─C─CH3 → RO─C─CH3 + HCl O O ║ ║ ROH + Cl─C─Cl→ RO─C─CCl + HCl 2. Реакции с разрывом С ¾O связи. Образование галогенидов. При действии неорганических галогенангидридов на третичные и вторичные спирты происходит в основном обмен гидроксила на галоген: 3(CH3 )3 COH + PBr3 → 3(CH3 )3 CBr + P(OH)3 Обмен гидроксила на галоген происходит и при действии PBr3 и PI3 на первичные спирты: 3C2 H5 OH + PBr3 → 3C2 H5 Br + P(OH)3 При действии галогенводородных кислот на спирты также образуются алкилгалогениды. Реакция может протекать либо по механизму SN 2 , либо по SN 1 . Например: Br- RCH2 OH + H+ → R¾CH2 ¾O+ ¾O → RCH2 Br + H2 O SN 2 ½ H для первичных спиртов
H для вторичных и третичных спитртов Для успешной замены гидроксильной группы на хлор используют реактив Лукаса (соляная кислота + ZnCl2 ). Реакционная способность спиртов в этих реакциях изменяется в ряду: третичные>вторичные>первичные. 3. Реакции с участием группы OH и атома водорода, стоящего у соседнего атома углерода. Дегидратация спиртов в олефины. Все спирты (кроме метилового) при пропускании их паров над нагретой до ~375°С окисью алюминия отщепляют воду и образуют олефин: Al2 O3
Особенно легко элиминируется вода из третичных спиртов. Дегидрогенизация. Образование разных продуктов в реакциях дегидрогенизации и окисления является важнейшим свойством, позволяющим отличить первичные, вторичные и третичные спирты. При пропускании паров первичного или вторичного, но не третичного спирта над металлической медью при повышенной температуре происходит выделение двух атомов водорода, и спирт превращается в альдегид: Cu RCH2 OH → R−C−H + H2 200-300 °C ║ O Вторичные спирты дают в этих условиях кетоны: R \ Cu CHOH → R’−C−R + H2 / 200-300 °C ║ R’ O Окисление. Для окисления спиртов обычно используют сильные окислители: KMnO4, K2 Cr2 O7 и H2 SO4 . При окислении первичных спиртов образуются альдегиды, которые далее могут окисляться до карбоновых кислот: RCH2 OH + [O] → R─C─H + H2 O ║ O R \ CHOH + [O] → R’−C−R + H2 O / ║ R’ O Вторичные спирты при окислении превращаются в кетоны: OH O ½[O] ║ CH3 CHCH3 → CH3 CCH3 Пропанол-2 пропанон-2 Третичные спирты значительно труднее окисляются, чем первичные и вторичные, причём с разрывом связей C¾C(OH): (а) O O CH3 ║ ║ ½
Муравьиная к-та 2-метилпентанон-3 CH3 O O CH3 ½[O] (б) ║ ║ ½
½Уксусная к-та 2-метилбутанон-3 CH3 CHCH3 2,3-диметилпентанон-3 O O (в) ║ ║ CH3 CCH3 + CH3 CH2 CCH3 Ацетон бутанон-2 Двухатомные спирты, или гликоли (алкандиолы) Двугидроксильные производные алканов (открыты Вюрцем) носят название гликолей или алкандиолов. Гидроксилы в алкандиолах находятся либо при соседних, либо более удалённых друг от друга углеродных атомах. 1,2-Гликоли имеют сладкий вкус, откуда и происходит название класса. Низшие гликоли – смешивающиеся с водой вязкие жидкости большей плотности, чем одноатомные спирты. Кипят при высокой температуре. Гликоли с короткой углеродной цепью, и прежде всего этиленгликоль, не растворяются в углеводородах и эфире, но смешиваются с водой и спиртами; как растворители они ближе стоят к воде и метанолу, чем к обычным органическим растворителям. Способы получения В принципе гликоли могут быть получены всеми синтетическими способами получения спиртов. Гидролиз дигалогенпроизводных: ClCH2 ─CH2 Cl + 2H2 O → HOCH2 ─CH2 OH + 2HCl или ClCH2 ─CH2 OH + H2 O → HOCH2 ─CH2 OH + HCl Восстановление сложных эфиров двухосновных кислот: O O ║ ║ C2 H5 O─C─(CH2 )n ─C─OC2 H5 + 8Na+6C2 H5 OH → HOCH2 ─(CH2 )n ─CH2 OH +8C2 H5 ONa 3CH2 =CH2 + 4H2 O + 2KMnO4 → 3HOCH2 ─CH2 OH + 2KOH + 2MnO2 Получение гликолей через хлоргидрины. Действием хлора и воды на олефин можно получить хлоргидрин, например ClCH2 ─CH2 OH. Хлоргидрин может быть превращён гидролизом непосредственно в гликоль. Пинаконы получают восстановлением (неполным) кетонов электрохимически или действием магния в присутствии иода: СH3 H3 C CH3 H3 C CH3 ½ | | 2H2 O | | 2 C=O + 2Mg + I2 → CH3 ─C─C─CH3 → CH3 ─C─C─CH3 ½ | | | | CH3 IMgO OMgI HO OH Бутандиол-1,4 (важный продукт, являющийся промежуточным продуктом при получении бутадиена и далее синтетического каучука) получают в промышленности гидрированием бутин-2-диола-1,4 (НОН2 С─С≡С─СН2 ОН). В промышленности этиленгликоль синтезируют из окида этилена, который получают окислением этилена: 250 °CH2 O
\ / O a-окись Химические свойства гликолей Так же как и одноатомные спирты, гликоли могут иметь первичные, вторичные и третичные гидроксилы. Этиленгликоль – двупервичный спирт, пропиленгликоль – первично-вторичный, пинакон – двутретичный. Всё сказанное о свойствах первичных, вторичных и третичных спиртов приложимо и к соответствующим гликолям. 1. Гликоли легко образуют хлорангидриды и бромгидрины при действии HCl или HBr, но второй гидроксил замещается на галоген труднее (лучше действием PCl5 или SOCl2 ). 2. При действии кислот гликоли дают два ряда сложных эфиров: O O O ║ ║ ║ HOCH2 ─CH2 ─O─C─R R─C─O─CH2 ─CH2 ─O─C─R 3. При окислении первичных гликолей образуются альдегиды. Так, окислением этиленгликоля получают глиоксаль: [O][O] HOCH2 ─CH2 OH → HOCH2 ─C=O → O=C─C=O ½ │ │ H H H 4. Дегидратация гликолей (кислотами или хлористым цинком) приводит к образованию альдегидов (или кетонов). Считают, что механизм этой дегидратации состоит в том, что сначала путём отрыва одной гидроксильной группы протоном образуется карбониевый катион, а затем атом водорода вместе со своей парой электронов (в виде гидрид-иона) перемещается к карбониевому углероду (гидридное перемещение ): H + │ CH2 ─CH2 → CH2 ─CH → CH3 ─CH + H+ │ │ │ ║ H+ OH OH O O │ H При дегидратации пинаконов мигрирует не водород, а метильная группа и происходит пинаколиновая перегруппировка, сопровождающаяся изменением углеродного скелета: СН3 СН3 СН3 СН3 СН3 │ │ ½ │ │ СН3 ─C ¾С─СН3 → С+ ─С─СН3 → СН3 ─С ─ С─СН3 + Н+ │ │ ½½ │ ║ ОН ОН СН3 О СН3 О Н+ │ пинаколин пинакон Н 5. Альдегиды в кислой среде ацетилируют 1,2-гликоли, образуя циклические ацетали (в кислой, но не щелочной среде в результате гидролиза ацеталя регенерируются исходные вещества):
Н СН2 ─О ацеталь 1,3-Гликоли способны реагировать подобным образом, давая шестичленные циклические ацетали. Для осуществления реакций ацетилирования необходима возможность приведения обоих гидроксилов в одну плоскость, т.е. возможность свободного вращения вокруг углерод-углеродной связи: НО─С │ С─ОН Это условие соблюдается у гликолей с открытой цепью, но не всегда у циклических. Многоатомные спирты Трёхатомные спирты – алкантриолы Единственным важным представителем алкантриолов является глицерин (пропантриол-1,2,3). Это очень вязкая бесцветная сладкая жидкость; т. пл. 17°С, т. кип. 290°С. Глицерин был получен гидролизом жиров, которые являются сложными эфирами глицерина и высших гомологов уксусной кислоты (и их олефиновых изологов). При гидролизе жиров перегретым паром глицерин остаётся в водном растворе, который отделяют от слоя расплавленных жирных кислот; после отгонки воды из этого раствора может быть выделен глицерин. Некоторое количество глицерина образуется при брожении сахаров. В настоящее время осуществлён промышленный синтез глицерина из пропилена, выделяемого из газов крекинга нефти. Этот синтез является доказательством строения глицерина как пропантриола. Сначала путём хлорирования пропилена при высокой температуре (500°С) получают хлористый аллил, сохраняющий двойную связь (реакция Львова): СН2 =СН─СН3 + Сl2 → CH2 =CH─CH2 Cl + HCl Затем присоединением хлора и воды хлористый аллил превращают в 1,3-дихлорпропанол-2 Cl OH Cl │ │ │ CH2 =CH─CH2 Cl + Cl2 + H2 O → CH2 ─CH─CH2 + HCl гидролиз которого даёт глицерин: Cl OH Cl ОН ОН ОН │ │ │ │ │ │ CH2 ─CH─CH2 + 2Н2 О → CH2 ─CH─CH2 + 2HСl 1,3-дихлорпропанол-2 пропантриол-1,2,3 (глицерин) Глицерин даёт с кислотами три ряда сложных эфиров: моно-, ди- и триэфиры. Для первых и вторых возможны изомеры: продукты этерификации по первичным и вторичным группам. При действии HCl на глицерин получается смесь двух монохлоргидринов глицерина, содержащая больше α-монохлоргидрина СН2 ОН─СНОН─СН2 Cl и меньше β-изомера СH2 OH─CHCl─CH2 OH. При обработке щёлочью оба изомера дают один и тот же глицидный спирт Н2 С─СН─СН2 ОН \ / О При обработке глицерина хлористым водородом в более жёстких условиях образуются два дихлоргидрина СН2 Cl─СНОН─СН2 Cl СH2 OH─CHCl─CH2 Cl при обработке щёлочью дающие эпихлоргидрин глицерина Н2 С─СН─СН2 Сl \ / О Являясь одновременно первичным и вторичным спиртом, глицерин, нашедший многообразное применение в органическом синтезе, при окислении образует смесь соответствующего альдегида и кетона:
| Н
СH2 OH─CО─CH2 OH диоксиацетон Диоксиацетон может быть получен хлорированием ацетона в 1,3-дихлорацетон СH2 Cl─CО─CH2 Cl и гидролизом последнего. Эта реакция также подтверждает строение глицерина. Четырёхатомные, пятиатомные и шестиатомные спирты (эритриты, пентиты и гекситы) Эритрит (бутантетраол-1,2,3,4) встречается в свободном виде и в виде сложных эфиров в водорослях и некоторых плесенях. Синтетический четырёхатомный спирт эритрит был получен из бутадиена СH2 =СH─CН=CH2 следующим путём: O O ║ ║ CН=CH2 +Br2 CH─CH2 Br 2AgO CCH3 CH─CH2 ─OCCH3 +Br2
CН=CH2 CH─CH2 Br CH─CH2 ─OCCH3 ║ O O O O O ║ ║ ║ ║ CHBr─CH2 ─OCCH3 2AgOCCH3 CH3 CO─CH─CH2 ─OCCH3 +4H2 O │ │ CHBr─CH2 ─OCCH3 CH3 CO─CH─CH2 ─OCCH3 ║ ║ ║ O O O 2CH2 ─CH─CH─CH2
OH OH OH OH Стереоизомерные эритриты – твёрдые, отлично растворимые в воде, сладкие на вкус вещества. Пентаэритрит (тетраоксинеопентан) С(СН2 ОН)4 в природе не встречается. Это твёрдое высокоплавкое (т. пл. 262°С) вещество. Получается синтетически взаимодействием формальдегида с водным раствором ацетальдегида в щелочной среде: Ca(OH)2
│ ║ H пентаэритрит O муравьиная кислота Пентиты и гекситы CH2 ─CH─CH─ СН─CH2 CH2 ─CH─CH─ СН─СН─CH2 │ │ │ │ │ │ │ │ │ │ │ OH OH OH OH ОН OH OH OH OH ОН ОН пентит гексит Твёрдые, растворимые в воде вещества, сладкие на вкус. Для каждого из спиртов известно много стереоизомеров. Некоторые пентиты и гекситы встречаются в природе, например пентит адонит (в Adonis vernalis ), стереоизомерные гекситы – маннит, дульцит, сорбит, идит. Все они имеют нормальный углеродный скелет и могут быть получены восстановлением соответствующих сахаров, которые являются их моноальдегидами. НЕПРЕДЕЛЬНЫЕ СПИРТЫ Одноатомные ненасыщенные спирты. Олефины не могут нести гидроксил при углероде во втором валентном состоянии. \ \ Структуры С=С─ неустойчивы и изомеризуются в С─С─ (правило Эльтекова ― / │ /│ ║ ОН Н О Эрленмейера). Лишь в некоторых случаях такая изомеризация в заметной степени обратима и мы имеем дело с таутомерным равновесием: \ \ С=С─ Û С─С─ / │ /│ ║ ОН Н О Для структур, в которых не несущий гидроксила непредельный атом не связан с электронооттягивающими группами (─ С─, NO2 и др.), правило Эльтекова-Эрленмейера ║ О Имеет полную силу. Поэтому виниловый спирт и его гомологи не существуют, а при попытках их получить – перегруппировываются в ацетальдегид (и соответственно его гомологи) или в кетоны: СН2 =СН → СН3 ─ С─Н │ ║ ОН О Причина перегруппировки – проявление того же (мезомерного) эффекта, что и в хлористом виниле, но в этом случае подходящего до конца – до полной передачи электронных пар – и являющегося таким образом +Т -эффектом: Н Н Н
** Эффект этот протонизирует водород гидроксила и создаёт у второго ненасыщенного атома углерода с его δ- зарядом удобное место атаки для иона водорода. В результате происходит изомеризация – переход протона к углероду. Однако алкоголяты, а также простые и сложные эфиры винилового спирта не только существуют, но в последних двух случаях даже используются в промышленном масштабе в качестве мономеров. Разумеется, их приходится получать не прямым путём. При действии металлического лития или натрия в растворе в жидком аммиаке на ртутное производное ацетальдегида получаются алкоголяты винилового спирта (И.Ф. Луценко): ClHgCH2 ─C=O + 2Me → CH2 =C─OMe + MeCl + Hg, где Me = Li или Na. │ │ H H Простые и сложные виниловые эфиры получают присоединением к ацетилену спиртов (в присутствии КОН) и карбоновых кислот (в присутствии солей двухвалентной ртути, кадмия, цинка): KOH
Me2+ ; 70°C
║ ║ O O
│ │ │ │ СН3 С─О CН3 С─О ОН ОН ║ ║ O O n /3 n/3 поливинилацетат оливиниловый спирт Аллиловый спирт СН2 =СН─СН2 ОН – наиболее простой из непредельных спиртов с удалённым от двойной связи положением гидроксильной группы – по свойствам гидроксила мало отличается от алканолов. Само собой разумеется, что наличие двойной связи обусловливает его непредельные свойства и ряд характерных для непредельных углеводородов реакций. Промышленный способ получения аллилового спирта – гидролиз хлористого аллила, получаемого хлорированием пропилена при высокой температуре: +OH-
-HCl Ацетиленовые спирты Эти вещества не получили большого значения и изучены сравнительно мало. Назовём из них один пропаргилловый спирт СН≡С─СН2 ОН, который в настоящее время проще всего получают по методу Реппе: CuC≡CCu
Ацетилен Он обладает обычной спиртовой функцией, при замене гидроксила способен к аллильной перегруппировке; имея ацетиленовый водород, может замещать его, как и ацетилен, на металлы, в частности на серебро и медь. БутиндиолНОСН2 ─С≡С─СН2 ОН используется при получении бутадиена-1,3: H3 PO4
- H2 O │ │ H2 C CH2 \ / O NaPO3
│ │ - H2 O H2 C CH2 \ / O АРОМАТИЧЕСКИЕ ОКСИСОЕДИНЕНИЯ ФЕНОЛЫ Термин «фенолы» происходит от старинного названия бензола «фен», введённого Лораном (1837 г.), и обозначает ароматическое вещество, содержащее гидроксил, связанное непосредственно с углеродом ароматического ядра. Фенолы, как и спирты могут содержать в своём составе, как одну, так и несколько гидроксильных групп. В зависимости от чиисла гидроксильных групп в молекуле различают одно-, двух-, трёх- и многоатомные фенолы. Структура и номенклатура . Фенолы обычно называют как производные простейшего члена этого ряда - фенола. Для метилфенолов имеется специальное название - крезолы. OH OH OH OH OH OH
CH3 OH Фенол о-хлорфенол м-крезол пирокатехин резорцин OH OH OH
Br NO2 2,4,6 - трибромфенол 2-хлор-4-нитрофенол Физические свойства. Табл.Фенолы
Простейшие фенолы представляют собой жидкости или низкоплавкие твёрдые вещества; из-за образования водородных связей они обычно имеют высокие температуры кипения. Сам фенол заметно растворим в воде (9г. на 100г. воды), из-за оразования водородных связей с водой; большинство других фенолов практически не растворимы в воде. Фенолы - бесцветные вещества, если только они не содержат каких либо групп, обусловливающих появление окраски. Простейший из фенолов – оксибензол (собственно, фенол) и его гомологи: о-, м- и п- крезолы содержатся в каменноугольной смоле. Дополнительные количества фенола, мировое потребление которого достигает миллионов тонн, получаются из бензола. Для этого используется (всё в меньших масштабах) старый метод щелочного плавления соли бензолсульфокислоты: 300 °C
Некоторое количество фенола получают гидролизом хлорбензола перегретым паром (450-500°С) над катализатором – силикагелем, промотированным ионами Cu2+ (Рашиг): Силикагель: Cu2+
Наибольшие перспективы развития имеет разложение перекиси кумола (изопропилбензола) разбавленными кислотами. Процесс состоит в следующем: ООН │ СН3 ─ СН─СН3 СН3 ─ С─СН3
ОН │ → + СН3 ─ С─СН3 ║ О Фенол – слабая кислота с константой диссоциации при комнатной температуре в водном растворе 1,3∙10-10 . Таким образом, он на несколько порядков кислее воды, не говоря уже о жирных спиртах, но гораздо слабее уксусной кислоты (1,8∙10-5 ). Фенол умеренно растворим в воде (8% при 15°С). Вода растворяется в феноле с образованием жидкого при комнатной температуре раствора. Сам фенол – бесцветное легкоплавкое (+41°С) кристаллическое вещество, вследствие окисления розовеющее на воздухе. Крезолы менее, чем фенол растворимы в воде, подобно фенолу хорошо растворимы в эфире, спиртах, хлороформе, бензоле. Фенолы хорошо растворяются в водных растворах щелочей в результате образования фенолятов щелочных металлов:
Гидролиз фенолята (обратная реакция) вследствие слабости кислотных свойств фенола заходит далеко, и требуется избыток щёлочи, чтобы сместить равновесие вправо. Уже двуокись углерода выделяет фенол из раствора фенолята. Кислотные свойства фенольного гидроксила вызваны мезомерным взаимодействием с ароматическим ядром, что выражается символами: H
O O O O
* * Валентные электроны атома кислорода (в том числе и связывающие водород с кислородом) оказываются частично рассредоточенными в орто- и пара-положения бензольного ядра, а водородный атом гидроксила – протонизированным. Таким образом, бόльшая кислотность фенола (сравнительно со спиртами) – это другая сторона сильного орто-пара-ориентирующего действия гидроксила в реакциях электрофильного замещения Реакции гидроксила фенолов 1. Образование фенолятов (см. выше). 2. Образование простых эфиров фенолов алкилированием фенолятов: ArONa + RI → ArOR + NaI ArONa + (CH3 O)2 SO2 → ArOCH3 + CH3 O─SO2 ONa 3. Образование сложных эфиров фенолов (в отличие от сложных эфиров спиртов) не может быть достигнуто взаимодействием их с кислотами, а только ацилированием фенолов (лучше в щелочной среде) галоидангидридами или ангидридами кислот:
║ ║ O O O=C─R │
│ ║ ║ O=C─R O O 4. Замещение гидроксила на хлор при действии PCl5 протекает гораздо труднее, чем для спиртов, и с плохим выходом. В этом случае происходит главным образом хлорирование в ядро, причём PCl5 превращается в PCl3 . С PCl3 в малой степени идёт замещение гидроксила на хлор, а в большей степени – образование трифенилфосфита (эфира фосфористой кислоты). С хлорокисью фосфора POCl3 образуется фениловый эфир фосфорной кислоты. 5. При перегонке с цинковой пылью фенолы превращаются в углеводороды: ArOH + Zn → ArH + ZnO Реакции ароматического ядра фенолов Гидроксил – один из сильнейших, а в щелочном растворе сильнейший орто-пара-ориентант. В соответствии с этим для фенолов легко проходят реакции электрофильного замещения. Механизм электрофильного замещения в фенолах обычно отличается от замещения в бензоле, его гомологах и даже в эфирах фенолов. Это отличие связано с лёгкостью гетеролиза связи О─Н, поскольку вместо нестабильного и заряженного σ-комплекса промежуточно получается сравнительно устойчивое соединение с хиноидной структурой типа I:
/\ ½ H A A I При этом установлено, что для большинства реакций фенолов первая стадия – быстрая и обычно обратимая, а вторая – медленная. В ряде случаев соединения типа I были выделены в свободном виде, правда, только для тех фенолов, в которых заняты все орто- и пара-положения (в случае обычных фенолов ароматизация совершается слишком быстро). Например: OH O
Br Если в феноле о- и п-положения заняты, то может происходить (особенно при нитровании) замена имеющихся заместителей на другие группы. Лёгкость такого замещения увеличивается в следующей последовательности: Br<SO3 H<H. Замена карбоксильной группы происходит даже при азосочетании. Галогенирование фенолов. В неводной среде галогенирование фенолов при соответствующих соотношениях реагентов приводит к смеси о- и п- галогенфенолов, далее к 2,4-дигалогенфенолам и, наконец, к 2,4,6-тригалогенфенолам (их лучше получать в водной щелочной среде). В случае орто- и пара-замещённых фенолов, например крезолов, занятые заместителем (например, метилом) места галогенированием не затрагиваются. Бромирование фенола избытком бромной воды проходит по схеме: OH OH O
Br Br Br Ориентирующая сила гидроксила, т.е. сообщение гидроксилом нуклеофильной активности п- углеродному атому, такова, что этот углерод и после замещения связанного с ним водородного атома способен воспринять электрофильную атаку электроположительного атома брома. Присоединение второго атома брома закрепляет циклогексадиеновую структуру.
Br Br-Br Br Br + Br- + H+ Сульфирование фенолов. Сульфирование фенола при комнатной температуре даёт в основном о- фенолсульфокислоту, при 100°С получается п- изомер, а в более жёстких условиях – 2,4-фенолдисульфокислота. Нитрование фенолов. Для получения мононитрофенолов приходится нитровать фенолы на холоду разбавленной азотной кислотой (~30%-ной), лучше всего получаемой смешением водного раствора селитры с серной кислотой (чтобы избежать присутствия окислов азота). Образуется смесь о- и п- нитрофенолов, из которой о- нитрофенол удаляют отгонкой с водяным паром, а п- изомер выделяют кристаллизацией. м- Изомер приходится готовить обходным путём, например из м- нитроанилина через м- нитрофенилдиазоний. 2,4-Динитрофенол проще всего получить гидролизом 2,4-динитрохлорбензола. Тринитрофенол, называемый пикриновой кислотой, производят в промышленном масштабе, нитруя крепкой нитрующей смесью 2,4-фенолдисульфокислоту, получаемую сульфированием фенола, без выделения её из сульфирующей массы. При этом нитруется не только свободное шестое положение, но и сульфогруппы замещаются на нитрогруппы. Наличие в феноле сульфогрупп защищает его и от окисления и от действия окислов азота. Нитрозирование фенолов. При действии водного раствора азотистой кислоты фенол нитрозируется в пара-положение: НО─ + HO─N=O → HO─ ─N=O Нитрозофенол таутомерен монооксиму п -бензохинона: HO─ ─N=O ↔ O= =N─OН Электрофильные замещения в фенолах с образованием углерод-углеродной связи. Таких реакций известно много. Они используются для получения бифункциональных соединений, например фенолокислот, фенолоальдегидов и фенолоспиртов. При нагревании фенолята натрия в токе СО2 образуется салициловокислый натрий (реакция Кольбе):
+ CO2 → При действии на фенолят натрия (избыток щёлочи) четырёххлористого углерода также образуется салициловокислый натрий, а при действии хлороформа – салициловый альдегид:
Действием олефинов на фенолы в присутствии льюисовых кислот получают п-алкилфенолы (частный случай реакции Фриделя-Крафтса): ОН OH │ ZnCl2 │
│ RCH─CH3 C синильной кислотой (или нитрилами) в присутствии хлористого водорода фенолы дают иминоальдегидофенолы или иминокетонофенолы (реакция Геша), а после гидролиза иминогруппы получаются сами оксиоксосоединения: OH OH OH │ HCl │ H2 O (H+ ) │
│ │ X─C=NH X─C=O (X=H, арил или алкил) Наиболее важная реакция этого рода – реакция фенолов с формальдегидом, которая протекает в присутствии как кислот, так и щелочей. При нагревании фенола (избытка) с формалином и серной кислотой происходит бурная реакция и образуется растворимый в спиртах, ацетоне и сложных эфирах полимер линейного строения – «новолак». При щелочной конденсации фенола с избытком формалина сначала образуется легкоплавкий сравнительно низкомолекулярный полимер «резол», подобно новолаку растворимый в органических растворителях. Это – так называемый термореактивный полимер: при нагревании происходит дальнейшая конденсация свободных оксиметиленовых групп с образованием метиленовых мостов, и полимер приобретает сетчатую структуру. Получаемый «резитол» нерастворим в органических растворителях, но сохраняет некоторую пластичность. При нагревании до 150°С конденсация идёт дальше и получается химически очень устойчивый, неплавкий и нерастворимый полимер – «резит», который можно нагревать до температуры ~300°С. Таковы три стадии процесса конденсации, объединяемые названием «бакелитизация» (по имени изобретателя бакелита – Бакеланда). Обычно резол перед последующей стадии конденсации смешивают с наполнителем (минеральным типа асбеста или органическим типа древесины, лигнина, целлюлозы) или пропитывают им древесину или волокнистые материалы и затем подвергают дальнейшей бакелитизации. Этот открытый в 1909 г. тип феноло-формальдегидных пластмасс и в настоящее время сохранил своё значение. Химический смысл протекающих процессов выражается следующей примерной схемой: OH
OH OH OH
CH2 OH
OH OH OH
½ ½
OH ½
CH2 ½
Таким образом происходит постепенное «сшивание» метиленовыми мостами всё большего количества молекул фенола в хаотически построенные макромолекулы резола, резитола и, наконец, резита. Химическая стой кость резита объясняется не только тем, что значительное количество активных орто- и пара-положений фенола замещены метиленовыми группами, сколько тем, что в следствие полной нерастворимости бакелита реагенты могут действовать на него только с поверхности. Алифатические кетоны в кислой среде реагируют с фенолом, образуя ди-n-оксифенилоктаны: CH3
½ CH3 Такой 2,2-бис-(4'-оксифенил)-пропан (т.н. дифенилолпропан) применяется в синтезе пластмасс повышенной теплостойкости, получаемых путём этерификации фенольных гидроксилов ароматическими двухосновными кислотами типа терефталевой. МНОГОАТОМНЫЕ ФЕНОЛЫ Диоксибензолы Изомерные диоксибензолы носят следующие названия: о -диоксибензол – пирокатехин, м -изомер – резорцин и п -изомер – гидрохинон. Это хорошо растворимые в воде, твёрдые, лишённые запаха вещества. Пирокатехин известен как продукт декарбоксилирования при нагревании пиротокатеховой кислоты, находимой в растениях:
HO O HO Пирокатехин – сильный восстановитель, и, окисляясь гетеролитически (например, ионом Ag+ ), он превращается в о -бензохинон:
OH O Резорцин (м -оксибензол) получают в технике сплавлением со щёлочью м -бензолдисульфоната натрия:
SO3 Na ONa Резорцин устойчивее своих изомеров к окислению. Кислотные его свойства выражены сильнее, чем у фенола. Уже водородом в момент выделения (амальгама натрия и вода) он восстанавливается в дигидрорезорцин (циклогександион-1,3):
OH CH2 Резорцин ещё легче, чем фенол, воспринимает разнообразные электрофильные атаки, так как обе его гидроксильные группы осуществляют согласованную ориентацию. Поэтому резорцин легко галоидируется, сульфируется, нитруется, нитрозируется и пр. Одно из его главных применений – синтез азокрасителей, в котором он служит азосоставляющей. При исчерпывающем нитровании резоцина получается тринитрорезорцин, стифниновая кислота : OH
½ OH NO2 во многом напоминающая пикриновую кислоту. Для карбоксилирования резоцина достаточно нагреть его в растворе бикарбоната натрия: ONa OH
½ O=C¾OH Получаемое соединение носит название резоциловой кислоты. Гидрохинон получают восстановлением п -бензохинона:
Как и пирокатехин, гидрохинон – сильный восстановитель, при окислении образующий п -бензохинон. Пирокатехин и гидрохинон применяются как фотографические проявители, восстанавливающие бромистое серебро до металла. Полиоксибензолы Смежный триоксибензол называется пирогаллолом, так как получается пиролизом (декарбоксилированием) галловой кислоты:
HO O HO выделяемой из продуктов гидролиза дубильных веществ типа танина. Пирогаллол в щелочных растворах легко окисляется даже кислородом воздуха, поэтому такие растворы используются для поглощения кислорода. В фотографии пирогаллол применяется как проявитель. Симметрический триоксибензол – флороглюцин в виде его производных очень распространён в растительном мире. Обычно флороглюцин получают гидролизом симметрического триаминобензола (его готовят восстановлением тринитробензола):
H2 N HO По свойствам флороглюцин похож на резорцин. 1,2,4-Триоксибензол можно синтезировать, присоединяя к п -бензохинону уксусный ангидрид и гидролизуя образовавшийся ацетет. Гексаоксибензол получают подкислением продукта соединения металлического калия и окиси углерода: OK OH
KO ½ OK HO ½ OH OK OH
Смотреть все комментарии (28) Работы, похожие на Реферат: Оксисоединения Назад
|
|
|
|
|
| |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
||||