Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Метрология

Название: Метрология
Раздел: Рефераты по технологии
Тип: реферат Добавлен 15:15:42 31 августа 2005 Похожие работы
Просмотров: 8413 Комментариев: 21 Оценило: 8 человек Средний балл: 4.1 Оценка: 4     Скачать

Метод приведения Он используется для определения результа­тов косвенного измерения и его погрешности при наличии корреля­ции между погрешностями измерений аргументов. Метод можно также применять при неизвестных распределениях погрешностей аргументов. Он предполагает наличие ряда согласованных результа­тов измерений аргументов Q11,Q,12,…,Q1m; Q21, Q22, …, Q2m; …, Qj1, QJ2, …, Qjm; …; QL1, QL2, …, QLm, полученных в процессе многократ­ных измерений. Согласованность результатов измерений означает либо одновременное их осуществление, либо то, что они выполнены над одним и тем же объектом и в одних и тех же условиях.

Метод основан на приведении отдельных значений косвенно изме­ряемой величины к ряду простых измерений. Получаемые сочетания отдельных аргументов подставляют в формулу (8.6) и вычисляют отдельные значения измеряемой величины Q: Q1, Q2, ..., Qj, ,QL.

Результат косвенного измерения и СКО его случайной по­грешности вычисляются по формулам


Доверительные границы случайной погрешности результата из­мерения рассчитываются по формуле где Т - коэффи­циент, зависящий от вида распределения отдельных значений оп­ределяемой величины и выбранной доверительной вероятности. При нормальном распределении отдельных значений измеряемой величины доверительные границы случайных погрешностей вы­числяются по методике для прямых многократных измерений, из­ложенной в ГОСТ 8.207-76.

Границы неисключенной систематической погрешности и до­верительные границы погрешности результата косвенного измере­ния определяются так же, как и в рассмотренных выше случаях.


Глава 12. МЕТРОЛОГИЧЕСКИЕ

ХАРАКТЕРИСТИКИ СРЕДСТВ ИЗМЕРЕНИЙ И ИХ

НОРМИРОВАНИЕ


При использовании СИ принципиально важно знать степень соответствия информации о измеряемой величине, содержащейся в выходном сигнале, ее истинному значению. С этой целью для каж­дого СИ вводятся и нормируются определенные метрологические характеристики (MX). Метрологические характеристики — это характеристики свойств средства измерений, оказывающие влия­ние на результат измерения и его погрешности. Характеристики, устанавливаемые нормативно-техническими документами, называ­ются нормируемыми, а определяемые экспериментально — действи­тельными. Номенклатура MX, правила выбора комплексов норми­руемых MX для средств измерений и способы их нормирования определяются стандартом ГОСТ 8.009-84 "ГСИ. Нормируемые мет­рологические характеристики средств измерений". Подробные ком­ментарии к этому документу приведены в [58].

Метрологические характеристики СИ позволяют:

• определять результаты измерений и рассчитывать оценки ха­рактеристик инструментальной составляющей погрешности изме­рения в реальных условиях применения СИ;

• рассчитывать MX каналов измерительных систем, состоящих из ряда средств измерений с известными MX;

• производить оптимальный выбор СИ, обеспечивающих требуе­мое качество измерений при известных условиях их применения;

• сравнивать СИ различных типов с учетом условий примене­ния.

При разработке принципов выбора и нормирования средств из­мерений необходимо придерживаться ряда положений, изложен­ных ниже.

1. Основным условием возможности решения всех перечислен­ных задач является наличие однозначной связи между нормиро­ванными MX и инструментальными погрешностями. Эта связь устанавливается посредством математической модели инструментальной составляющей погрешности, в которой нормируемые MX долж­ны быть аргументами. При этом важно, чтобы номенклатура MX и способы их выражения были оптимальны. Опыт эксплуатации раз­личных СИ показывает, что целесообразно нормировать комплекс MX, который, с одной стороны, не должен быть очень большим, а с другой — каждая нормируемая MX должна отражать конкретные свойства СИ и при необходимости может быть проконтролирована.

2. Нормирование MX средств измерений должно производиться исходя из единых теоретических предпосылок. Это связано с тем, что в измерительных процессах могут участвовать СИ, построен­ные на различных принципах.

3. Нормируемые MX должны быть выражены в такой форме, чтобы с их помощью можно было обоснованно решать практически любые измерительные задачи и одновременно достаточно просто проводить контроль СИ на соответствие этим характеристикам.

4. Нормируемые MX должны обеспечивать возможность стати­стического объединения, суммирования составляющих инструмен­тальной погрешности измерений. В общем случае она может быть определена как сумма (объединение) следующих составляющих погрешности:

(t), обусловленной отличием действительной функции пре­образования в нормальных условиях от номинальной, приписан­ной соответствующими документами данному типу СИ. Эта погреш­ность называется основной;

, обусловленной реакцией СИ на изменение внешних влияю­щих величин и неинформативных параметров входного сигнала относительно их номинальных значений. Эта погрешность называ­ется дополнительной;

обусловленной реакцией СИ на скорость (частоту) изме­нения входного сигнала. Эта составляющая, называемая динамиче­ской погрешностью, зависит и от динамических свойств средств измерений, и от частотного спектра входного сигнала;

, обусловленной взаимодействием СИ с объектом измере­ний или с другими СИ, включенным последовательно с ним в изме­рительную систему. Эта погрешность зависит от характеристик и параметров входной цепи СИ и выходной цепи объекта измерений.

Таким образом, инструментальную составляющую погрешности СИ можно представить в виде




где * — символ статистического объединения составляющих.

Первые две составляющие представляют собой статическую по­грешность СИ, а третья — динамическую. Из них только основная погрешность определяется свойствами СИ. Дополнительная и ди­намическая погрешности зависят как от свойств самого СИ, так и от некоторых других причин (внешних условий, параметров изме­рительного сигнала и др.).

Требования к универсальности и простоте статистического объ­единения составляющих инструментальной погрешности обуслав­ливают необходимость их статистической независимости — некор­релированности. Однако предположение о независимости этих составляющих не всегда верно.

Выделение динамической погрешности СИ как суммируемой составляющей допустимо только в частном, но весьма распростра­ненном случае, когда СИ можно считать линейным динамическим звеном и когда погрешность является весьма малой величиной по сравнению с выходным сигналом. Динамическое звено считается линейным, если оно описывается линейными дифференциальными уравнениями с постоянными коэффициентами. Для СИ, являющихся существенно нелинейными звеньями, выделение в отдельно сумми­руемые составляющие статической и динамической погрешностей недопустимо.

5. Нормируемые MX должны быть инвариантны к условиям применения и режиму работы СИ и отражать только его свойства. Выбор MX необходимо осуществлять так, чтобы пользователь имел возможность рассчитывать по ним характеристики СИ в реальных условиях эксплуатации.

6. Нормируемые MX, приводимые в нормативно-технической документации, отражают свойства не отдельно взятого экземпляра СИ, а всей совокупности СИ данного типа, т.е. являются номи­нальными. Под типом понимается совокупность СИ, имеющих оди­наковое назначение, схему и конструкцию и удовлетворяющих од­ним и тем же требованиям, регламентированным в технических условиях. Метрологические характеристики отдельного СИ данно­го типа могут быть любыми в пределах области значений номи­нальных MX. Отсюда следует, что MX средства измерений данного

типа должна описываться как нестационарный случайный процесс. Математически строгий учет данного обстоятельства требует нор­мирования не только пределов MX как случайных величин, но и их временной зависимости (т.е. автокорреляционных функций). Это приведет к чрезвычайно сложной системе нормирования и практи­ческой невозможности контроля MX, поскольку при этом он дол­жен был бы осуществляться в строго определенные промежутки времени. Вследствие этого принята упрощенная система нормиро­вания, предусматривающая разумный компромисс между матема­тической строгостью и необходимой практической простотой. В принятой системе низкочастотные изменения случайных составляю­щих погрешности, период которых соизмерим с длительностью меж­поверочного интервала, при нормировании MX не учитываются. Они определяют показатели надежности СИ, обуславливают выбор рациональных межповерочных интервалов и других аналогичных характеристик. Высокочастотные изменения случайных составляю­щих погрешности, интервалы корреляции которых соизмеримы с длительностью процесса измерения, необходимо учитывать путем нормирования, например, их автокорреляционых функций.

Перечень нормируемых MX делится на шесть основных групп

(рис.12.1), которые и рассматриваются далее.


3.2. КЛАССЫ ТОЧНОСТИ СРЕДСТВ ИЗМЕРЕНИЯ


Для обеспечения единства измерений и взаимозаменяемости средств измерений характеристики их метрологических свойств (метрологические характеристики) нормируются и регламентируются стандартами. Номенк­латура метрологических характеристик и полнота, с которой они должны описывать те или иные свойства средств измерений, зависят от назначения средств измерений, условий эксплуатации, режима работы и многих дру­гих факторов. В полном перечне метрологических характеристик можно выделить следующие их группы:

- градуировочные характеристики, определяющие соотношение ме­жду сигналами на входе и выходе средства измерений в статическом ре­жиме. К ним относятся, например, номинальная статическая характери­стика преобразования (градуировочная характеристика) прибора, но­минальное значение меры, пределы измерения, цена деления шкалы, вид и параметры цифрового кода в цифровом приборе;

- показатели точности средства измерения, позволяющие оценить инструментальную составляющую погрешности результата измере­ния;

- динамические характеристики, отражающие инерционные свойст­ва средств измерения и необходимые для оценивания динамических по­грешностей измерений;

- функции влияния, отражающие зависимость метрологических ха­рактеристик средств измерения от воздействия влияющих величин или неинформативных параметров входного сигнала.

Неинформативным называется параметр входного сигнала, не свя­занный непосредственно с измеряемой величиной, но оказывающий влияние на результат измерения, например, частота переменного элек­трического тока при измерении его амплитуды.

Обычно метрологические характеристики нормируются раздельно для нормальных и рабочих условий применения средств измерений. Нормаль­ными считаются такие условия, при которых изменением метрологических характеристик под воздействием влияющих величин можно пренебречь. Так, для многих типов средств измерений нормальными условиями приме­нения являются: температура (20±5)°С, атмосферное давление 84... 106 кПа, относительная влажность 30... 80%. Рабочие условия отличаются от нор­мальных более широкими диапазонами влияющих величин.

Учет всех нормируемых метрологических характеристик средства измерений при оценивании погрешности результата измерений, как вид­но, сложная и трудоемкая процедура, оправданная при измерениях по­вышенной точности. При измерениях на производстве, в обиходе такая точность не всегда нужна. В то же время, определенная информация о возможной инструментальной составляющей погрешности измерения необходима. Такая информация дается указанием класса точности сред­ства измерений.

Под классом точности понимают обобщенную характеристику точности средств измерений данного типа, определяемую пределами до­пускаемой основной погрешности. Классы точности присваивают сред­ствам измерений при их разработке на основании исследований и испы­таний представительной партии средств измерения данного типа. При этом пределы допускаемых погрешностей нормируют и выражают в форме абсолютных, приведенных или относительных погрешностей, в зависимости от характера изменения погрешностей в пределах диапазо­на измерений. Приведенной называется относительная погрешность, вычисленная в процентах от некоторого нормирующего значения. В качестве нормирующего обычно принимается конечное значение шкалы (верхний предел измерения для приборов с односторонней шкалой или сумма пределов — для приборов с нулем посредине).

Пределы допускаемой абсолютной погрешности устанавливают по формулам:


(3.4)


или

где х — значение измеряемой величины; а, b положительные числа, не зависящие от х.

положительные числа, не

Нормирование в соответствии с (3.5) означает, что в составе по­грешности средства измерения присутствуют аддитивная и мультипли­кативная составляющие, например, для генератора низкой частоты ГЗ-36 = ±(0,03+2) Гц.

Пределы допускаемой приведенной основной погрешности опреде­ляют по формуле



где Хн — нормирующее значение, выраженное в тех же единицах, что и х; р — отвлеченное положительное число, выбираемое из стандартизо­ванного ряда значений (1*10n; 1,5*10n; ...,5*10n; ...,где n - 1,0,-1,-2 и т.д.).

Для измерительных приборов с существенно неравномерной шкалой нормирующее значение устанавливают равным длине шкалы.

Пределы допускаемой относительной основной погрешности:

если установлена по формуле (3.4)


(3.7)



если А установлена по (3.5)


(3.8)



где q — отвлеченное положительное число, выбираемое из стандартизо­ванного ряда значений; Хк — больший по модулю из пределов измере­ний (верхний предел измерения, или сумма пределов измерения для при­боров с нулем посредине); с, d — положительные числа, выбираемые из стандартизованного ряда; х — показание прибора.

Пределы допускаемых дополнительных погрешностей, как правило, устанавливают в виде дольного значения предела допускаемой основной погрешности. Обозначение классов точности наносится на шкалы, щит­ки или корпуса приборов.

Классы точности средств измерений обозначаются условными знаками (буквами, цифрами). Для средств измерений, пределы допускаемой основной погрешности которых выражают в форме приведенной погрешности или от­носительной погрешности в соответствии с (3.6) и (3.7), классы точности обозначаются числами, равными этим пределам в процентах. Чтобы от­личить относительную погрешность от приведенной, обозначение класса

точности в виде относительной погрешности обводят кружком . Если


погрешность нормирована в процентах от длины шкалы, то под обозначением класса ставится знак . Если погрешность нормирована фор­мулой (3.8), то класс точности обозначается как с/d (например, 0,02 / 0,01).

Пример. На шкале амперметра с пределами измерения 0... 10 А нанесено обозначение класса точности 2,5. Это означает, что для данного прибора нормирована приведенная

погрешность. Подставляя в (3.6) Хn = 10А и р = 2,5 получим

Если бы обозначение класса точности было , то погрешность следовало бы

вычислить в процентах от измеренного значения. Так, при Iизм = 2А, погрешность прибо

ра не должна превышать .


2.7. КОСВЕННЫЕ ИЗМЕРЕНИЯ


При косвенных измерениях искомое значение величины находят расчетом на основе измерения других величин, связанных с измеряемой величиной известной зависимостью



Результатом косвенного измерения является оценка величины А, ко­торую находят подстановкой в формулу (2.18) оценок аргументов аi.

Поскольку каждый из аргументов а, измеряется с некоторой погреш­ностью, то задача оценивания погрешности результата сводится к сум­мированию погрешностей измерения аргументов. Однако особенность косвенных измерений состоит в том, что вклад отдельных погрешностей измерения аргументов в погрешность результата зависит от вида функ­ции (2. 18).

Для оценки погрешностей существенно разделение косвенных изме­рений на линейные и нелинейные косвенные измерения. При линейных косвенных измерениях уравнение измерений имеет вид



где bj — постоянные коэффициенты при аргументах аi.

Любые другие функциональные зависимости (2.18) относятся к не­линейным косвенным измерениям.

Результат линейного косвенного измерения вычисляют по формуле (2.19), подставляя в нее измеренные значения аргументов.

Погрешности измерения аргументов могут быть заданы своими гра­ницами , либо доверительными границами , с доверительными вероятностями Рi .

При малом числе аргументов (меньше пяти) простая оценка погреш­ности результата получается суммированием предельных погрешно­стей (без учета знака), т.е. подстановкой границ ... , в вы­ражение

(2.20)



Однако эта оценка является излишне завышенной, поскольку та­кое суммирование фактически означает, что погрешности измерения всех аргументов одновременно имеют максимальное значение и сов­падают по знаку. Вероятность такого совпадения практически равна нулю. Для нахождения более реалистичной оценки переходят к ста­тистическому суммированию погрешностей аргументов. Полагая, что в заданных границах погрешности аргументов распределены равномерно, доверительные границы (Р) погрешности результата измерения рассчитывают по формуле

(2.21)



где коэффициент k определен в (2.15).

Если погрешности измерения аргументов заданы доверительны­ми границами с одинаковыми доверительными вероятностями, то полагая распределение этих погрешностей нормальным, доверитель­ные границы результата находят по формуле

(2.22)



При различных доверительных вероятностях погрешностей аргумен­тов их необходимо привести к одному и тому же значению Р.

Нелинейные косвенные измерения характеризу­ются тем, что результаты измерений аргументов подвергаются функцио­нальным преобразованиям. Но, как показано в теории вероятностей, любые, даже простейшие функциональные преобразования случайных величин, приводят к изменению законов их распределения.

Пример. Результат измерения аргумента подчиняется нормальному распределению плотности вероятностей, кривая которого показана на рис. 2.13, а.

При возведении измеренного значения величины в квадрат q = а2 график плотности распределения претерпевает изменения и принимает вид, показанный на рис. 2.13, б (вы­вод формулы опускаем). Уравнение кривой в этом случае имеет следующий вид:




Рис. 2.13. Графики плотности распределения вероятности результата измерения, подчиняющегося нормальному закону, и квадрата этого результата измерения

При сложной функции (2.18) и в особенности если это функция не­скольких аргументов, отыскание закона распределения погрешности результата связано со значительными математическими трудностями. Поэтому при нелинейных косвенных измерениях приходится отказы­ваться от использования интервальных оценок погрешности результата, ограничиваясь приближенной верхней оценкой ее границ. В основе при­ближенного оценивания погрешности нелинейных косвенных измерений лежит линеаризация функции (2.18) и дальнейшая обработка результа­тов, как при линейных измерениях.

Запишем выражение для полного дифференциала функции А:


(2.23)


По определению полный дифференциал функции — это приращение функции, вызванное малыми приращениями ее аргументов.

Учитывая, что погрешности измерения аргументов всегда являются малыми величинами по сравнению с номинальными значениями аргу­ментов, можно заменить в (2.23) дифференциалы аргументов dаi, на по­грешности измерений аi, а дифференциал функции dA на погрешность результата измерения :


(2.24)


Полагая, как и прежде, что распределения погрешностей аргументов подчиняются равномерному закону, при числе слагаемых m < 5 грани­цы погрешности результата можно определить по формуле (2.20). В том случае, когда погрешности аргументов заданы их доверительными гра­ницами, оценку погрешности результата измерения вычисляют по (2.22). В обеих случаях роль коэффициентов b1,b2,…,bm выполняют частные

производные


Применив формулу (2.24), получим несколько простых правил оце­нивания погрешности результата косвенного измерения.

Правило 1. Погрешности в суммах и разностях. Если a1 и а2 измерены с погрешностями и и измеренные значения использу­ются для вычисления суммы или разности А = а1*а2, то суммируются абсолютные погрешности (без учета знака):

Правило 2. Погрешности в произведениях и частных. Если из­меренные значения а1, и а2 используются для вычисления А = а1 * а2 или А = а12, то суммируются относительные погрешности , где .

Правило 3. Измеренная величина умножается на точное число.

Если а используется для вычисления произведения А = В * а, в котором В не имеет погрешности, то А = |В|а .

Правило 4. Возведение в степень. Если а используется для вычисления степени А = аn, то А = .

Правило 5. Погрешность в произвольной функции одной пере­менной. Если а используется для вычисления функции А(а), то



Вывод этих правил не приводится и может быть легко сделан само­стоятельно. Использование правил позволяет получить не слишком завы­шенную оценку предельной погрешности результата нелинейного косвен­ного измерения при не слишком большом числе аргументов (m < 5).

Пример. Производится косвенное измерение электрической мощности, рассеиваемой на резисторе сопротивлением R при протекании по нему тока I. Так как Р =I2R, то, при­меняя правила 2 и 4, получим

Пример. Измерением найдено значение утла Необходимо найти cos. Наилучшая оценка для cos20° = 0,94. Погрешность должна быть выражена в радианах, т.е. = 3° = 0,05 рад. Тогда по правилу 5 (cos) = (sin20°)*0,05 = 0,34-0,05 = 0,02. Окончательно cos = 0,94±0,02 .


7.Преобразование измеряемой величины как косвенные измерения


При косвенных измерениях результат определяется на основании измерений величин, связанных с измеряемой величиной известной зависимостью. При этом в качестве примеров рассматривались случаи, когда закономерная зависимость выражалась строго математически. Однако строгая закономерность зависимости между величинами может быть неизвестна, хотя и известно, что такая зависимость существует. Например, известно, что электродвижущая сила термопары зависит от температуры. Определить эту зависимость на основании известных нам законов физики мы не можем даже для одной и той же пары металлов. На эту зависимостиь влияют малейшие отклонения в составах сплавов и технология их обработки. В этих случаях нужную нам зависимость мы можем определить методом совместных измерений. И не только определить, но и исследовать, и изучить постоянство и воспроизводимость этой зависимости влияния на нее внешних воздействий. Когда зависимость одной величины от другой будет нам хорошо известна, мы имеем возможность измерять нужную нам величину на основании измерений других величин, связанных с измеряемой известной зависимостью.

Описанные измерения следует также отнести к косвенным измерениям как одну из его разновидностей. Разновидностью косвенных измерений является также случай нахождения значения измеряемой величины путем прямых измерений компонентов известной формулы, определяющей ее зависимости от этих компонентов. Эта разновидность косвенных измерений относится к случаю нахождения значения измеряемой величины по ее зависимости от других величин, определяемой путем совместных измерений. Вторая разновидность косвенных измерений может рассматриваться так же, как измерение путем преобразования измеряемой величины в другую, по природе своей существенно отличающуюся от измеряемой, но связанную с ней устойчивой зависимостью.




2.4. Метрологические свойства и метрологические характеристики средств измерений


Метрологические свойства СИ — это свойства, влияющие на результат измерений и его погрешность. Показатели метроло­гических свойств являются их количественной характеристикой и называются метрологическими характеристиками.

Метрологические характеристики, устанавливаемые НД, на­зывают нормируемыми метрологическими характеристиками.

Все метрологические свойства СИ можно разделить на две группы:

1) свойства, определяющие область применения СИ;

2) свойства, определяющие качество измерения.

К основным метрологическим характеристикам, определя­ющим свойства первой группы, относятся диапазон измерений и порог чувствительности.

Порог чувствительности — наименьшее изменение измеряе­мой величины, которое вызывает заметное изменение выходно­го сигнала. Например, если порог чувствительности весов ра­вен 10 мг, то это означает, что заметное перемещение стрелки весов достигается при таком малом изменении массы, как 10 мг.

К метрологическим свойствам второй группы относятся три главных свойства, определяющих качество измерений: точ­ность, сходимость и воспроизводимость измерений.

Наиболее широко в метрологической практике использует­ся первое свойство — точность измерений. Рассмотрим его наи­более подробно. Точность измерений СИ определяется их по­грешностью.

Погрешность* — это разность между показаниями СИ и ис­тинным (действительным) значением измеряемой физической величины. Поскольку истинное значение физической величины неизвестно, то на практике пользуются ее действительным значением. Для рабочего СИ за действительное значение принимают показания рабочего эталона низшего разряда (допустим, 4-го), для эталона 4-го разряда, в свою очередь, — значение физи­ческой величины, полученное с помощью рабочего эталона 3-го разряда. Таким образом, за базу для сравнения принимают значение СИ, которое является в поверочной схеме вышестоящим по отношению к подчиненному СИ, подлежащему поверке:

г

* Следует делать различие между понятиями «погрешность» и «ошибка», Первая возникает по объективным обстоятельствам, устранить ее невозможно, можно уменьшить с помощью определенных методов. Термин «ошибка» связан с субъективными обстоятельствами. После проверки результатов ее устра­няют

де — погрешность поверяемого СИ; — значение той же самой величины, найденное с помощью поверяемого СИ; Хо — значение СИ, принятое за базу для сравнения, т.е. действитель­ное значение.

Например, при измерении барометром атмосферного давле­ния получено значение Хп — 1017 гПа. За действительное значе­ние принято показание рабочего эталона, которое равнялось Xо = 1020 гПа. Следовательно, погрешность измерения баро­метром составила:



Погрешности СИ могут быть классифицированы по ряду признаков, в частности:

по способу выражения — абсолютные, относительные;

по характеру проявления — систематические, случайные;

по отношению к условиям применения — основные, допол­нительные.

Наибольшее распространение получили метрологические свойства, связанные с первой группировкой — с абсолютными и относительными погрешностями.

Точность измерений СИ — качество измерений, отражающее близость их результатов к действительному (истинному) значе­нию измеряемой величины. Точность определяется показателя­ми абсолютной и относительной погрешности.

Определяемая по формуле (3) является абсолютной по­грешностью. Однако в большей степени точность СИ характе­ризует относительная погрешность (), т.е. выраженное в про­центах отношение абсолютной погрешности к действительно­му значению величины, измеряемой или воспроизводимой данным СИ:



Точность может быть выражена обратной величиной отно­сительной погрешности — 1/. Если погрешность = 0,1% или 0,001 = 10-3, то точность равна 10-3.

В стандартах нормируют характеристики точности, связан­ные с другими погрешностями.

Систематическая погрешность — составляющая погрешно­сти результата измерения, остающаяся постоянной (или же за­кономерно изменяющейся) при повторных измерениях одной и той же величины. Ее примером может быть погрешность граду­ировки, в частности погрешность показаний прибора с круго­вой шкалой и стрелкой, если ось последней смещена на некото­рую величину относительно центра шкалы. Если эта погреш­ность известна, то ее исключают из результатов разными способами, в частности введением поправок.

При нормировании систематической составляющей погреш­ности СИ устанавливают пределы допускаемой систематичес­кой погрешности СИ — конкретного типа — . Величина сис­тематической погрешности определяет такое метрологическое свойство, как правильность измерений СИ.

Случайная погрешность — составляющая погрешности ре­зультата измерения, изменяющаяся случайным образом (по зна­ку и значению) в серии повторных измерений одного и того же размера величины с одинаковой тщательностью. В появлении этого вида погрешности не наблюдается какой-либо закономер­ности. Они неизбежны и неустранимы, всегда присутствуют в результатах измерения. При многократном и достаточно точ­ном измерении они порождают рассеяние результатов.

Характеристиками рассеяния являются средняя арифмети­ческая погрешность, средняя квадратическая погрешность, раз­мах результатов измерений. Поскольку рассеяние носит вероят­ностный характер, то при указании на значения случайной по­грешности задают вероятность.

Укажем в качестве примера на две нормируемые метрологичес­кие характеристики, отражающие точность СИ.

Доверительная погрешность — верхняя и нижняя границы ин­тервала погрешности результата измерений при данной довери­тельной вероятности. Например, в поверочной схеме для гирь и весов (табл. 2) установлено для гирь 1—3-го разрядов значение до­верительной абсолютной погрешности () при вероятности 0,95.

С

редняя квадратическая погрешность (среднее квадратическое отклонение (S) — характеристика рассеяния результатов измере­ний одной и той же величины вследствие влияния случайных по­грешностей. Применяется для оценки точности первичных и вто­ричных эталонов. Например, в поверочной схеме (см. табл. 2) для гири как вторичного эталона (эталона-копии) дано значение по­грешности через такую разновидность показателя, как суммарная погрешность результата измерений (S ;).

Она представляет среднюю квадратическую погрешность ре­зультата измерений, состоящую из случайных и не исключенных систематических погрешностей.

Наконец, показатели точности могут устанавливаться в связи с группировкой погрешностей СИ по условиям измерения.

Основная погрешность СИ — погрешность, определяемая в нормальных условиях применения СИ.

Дополнительная погрешность СИ — составляющая погрешно­сти СИ, дополнительно возникающая вследствие отклонения ка­кой-либо из влияющих величин (температуры, относительной влажности, напряжения сети переменного тока и пр.) от ее нормаль­ного значения.

Обычно метрологические характеристики нормируют раздель­но для нормальных и рабочих условий применения СИ. Нормаль­ными считаются условия, при которых изменением характеристик под воздействием внешних факторов (температура, влажность и пр.) принято пренебрегать. Так, для многих типов СИ нормальны­ми условиями применения являются температура (293 ± 5) К, ат­мосферное давление (100 ± 4) кПа, относительная влажность (65 ± ± 15)%, электрическое напряжение в сети питания 220 В ± 10%. Ра­бочие условия отличаются от нормальных более широкими диапа­зонами изменения влияющих величин. И те и другие метрологичес­кие характеристики указываются в НД.

Оценка погрешности измерений СИ, используемых для опреде­ления показателей качества товаров, определяется спецификой при­менения последних. Например, погрешность измерения цветового тона керамических плиток для внутренней отделки жилища должна быть по крайней мере на порядок ниже, чем погрешность измерения аналогичного показателя серийно выпускаемых картин, сделанных цветной фотопечатью. Дело в том, что разнотонность двух наклеен­ных рядом на стену кафельных плиток будет бросаться в глаза, тог­да как разнотонность отдельных экземпляров одной картины замет­но не проявится, так как они используются разрозненно.

Выше были подробно рассмотрены характеристики точнос­ти результатов измерений. Рассмотрим два других свойства, определяющих качество измерений, — сходимость и воспроиз­водимость результатов измерений.

Сходимость результатов измерений — характеристика каче­ства измерений, отражающая близость друг к другу результа­тов измерений одной и той же величины, выполненных повтор­но одними и теми же средствами, одним и тем же методом, в одинаковых условиях и с одинаковой тщательностью.

Количественная оценка сходимости может быть дана с по­мощью разных показателей. Так, в стандартах на методы опре­деления химического состава мяса сходимость указывается в различной форме: при определении нитрита за результат ана­лиза принимают среднее арифметическое из двух параллельных определений при расхождении по отношению к среднему не бо­лее 10% при Р = 0,95; при определении азота разница между ре­зультатами двух определений, выполненных одновременно или с небольшими промежутками времени одним и тем же химиком-аналитиком, не должна превышать 0,10 г азота на 10 г образца.

Высокая сходимость результатов измерения очень важна при оценке показателей качества товаров, приобретаемых потреби­телем в виде партии (см. выше пример с керамической плиткой).

Воспроизводимость результатов измерений — повторяе­мость результатов измерений одной и той же величины, полу­ченных в разных местах, разными методами, разными операто­рами, в разное время, но приведенных к одним и тем же условиям измерений (температуре, давлению, влажности и др.).

Например, в стандарте на методы определения плотности молока воспроизводимость регламентируется в следующей фор­ме: допускаемое расхождение между результатами определения плотности молока одним типом ареометра в различных услови­ях (в разное время, в разных местах и разными операторами) не должно превышать 0,8 кг/м3.

В процедурах сличения результатов анализа качества одно­типной продукции в разных лабораториях рекомендуется [9] оценивать воспроизводимость по методике, изложенной в сле­дующем примере.

Пусть в двух лабораториях (например, контролирующей и кон­тролируемой) при измерениях на одном и том же образце продук­ции некоторого показателя получены значения С1 и С2 и при этом известны граничные значения абсолютной погрешности результа­тов измерений гр1 и гp2, относящиеся к одной и той же вероятности Р - 0,95. В этом случае модуль разности С1 - С2 не должен с вероятностью Р = 0,9 превышать суммы модулей гр1 и гр2, т.е. должно выполняться соотношение: С1 — С2, < |гр1| + |гр2|.

Номенклатура нормируемых метрологических характерис­тик СИ определяется назначением, условиями эксплуатации и многими другими факторами. У СИ, применяемых для высоко­точных измерений, нормируется до десятка и более метрологи­ческих характеристик в стандартах технических требований (технических условий) и ТУ. Нормы на основные метрологичес­кие характеристики приводятся в эксплуатационной докумен­тации на СИ. Учет всех нормируемых характеристик необхо­дим при измерениях высокой точности и в метрологической практике. В повседневной производственной практике широко пользуются обобщенной характеристикой — классом точности.

Класс точности СИ — обобщенная характеристика, выра­жаемая пределами допускаемых (основной и дополнительной) погрешностей, а также другими характеристиками, влияющи­ми на точность. Классы точности конкретного типа СИ уста­навливают в НД. При этом для каждого класса точности уста­навливают конкретные требования к метрологическим харак­теристикам, в совокупности отражающим уровень точности СИ данного класса. Например, для вольтметров нормируют предел допускаемой основной погрешности и соответствующие нор­мальные условия; пределы допускаемых дополнительных по­грешностей; пределы допускаемой вариации показаний; невоз­вращение указателя к нулевой отметке. У плоскопараллельных концевых мер длины такими характеристиками являются пре­делы допускаемых отклонений от номинальной длины и плоскопараллельности; пределы допускаемого изменения длины в течение года. У мер электродвижущей силы (нормальных эле­ментов) нормируют пределы допускаемой нестабильности ЭДС в течение года.

Обозначение классов точности осуществляется следующим об­разом.

Если пределы допускаемой основной погрешности выражены в форме абсолютной погрешности СИ, то класс точности обознача­ется прописными буквами римского алфавита. Классам точности, которым соответствуют меньшие пределы допускаемых погрешно­стей, присваиваются буквы, находящиеся ближе к началу алфавита.

Для СИ, пределы допускаемой основной погрешности которых принято выражать в форме относительной погрешности, обозна­чаются числами, которые равны этим пределам, выраженным в процентах. Так, класс точности 0,001 нормальных элементов сви­детельствует о том, что их нестабильность за год не превышает 0,001%. Обозначения класса точности наносят на циферблаты, щит­ки и корпуса СИ, приводят в НД. СИ с несколькими диапазонами измерений одной и той же физической величины или предназна­ченным для измерений разных физических величин могут быть при­своены различные классы точности для каждого диапазона или для каждой измеряемой величины. Так, электроизмерительному при­бору, предназначенному для измерений напряжения и сопротивле­ния, могут быть присвоены два класса точности: один — как воль­тметру, другой — как омметру.

Присваиваются классы точности СИ при их разработке (по результатам приемочных испытаний). В связи с тем что при эк­сплуатации их метрологические характеристики обычно ухуд­шаются, допускается понижать класс точности по результатам поверки (калибровки).

Итак, класс точности позволяет судить о том, в каких преде­лах находится погрешность измерений этого класса. Это важно знать при выборе СИ в зависимости от заданной точности из­мерений.

Точность и методика производимых измерений требуют спе­циального рассмотрения.



Цель работы: Освоение методик определения основных метрологических и эксплуатационных характеристик первичных измерительных преобразователей информации на примере бесконтактного волоконно-оптического датчика перемещений.

Используемое оборудование: волоконно-оптический датчик перемещения, специальный штатив с возможностью контроля перемещений, цифровой вольтметр, микрометрический винт, четыре различных типа поверхности.

Алгоритм получения результатов.

Волоконно-оптический датчик подключают к цифровому вольтметру.

Часть 1. Нахождение функции преобразования.

  1. Изменяя расстояние между датчиком и поверхностью, находим положение датчика, при котором напряжение на выходе датчика будет максимальным.

  2. Находим точку перегиба функции преобразования. Для этого измеряем напряжение в нескольких точках при xmax, находим, на каком интервале самое большое изменение показаний вольтметра. Точка перегиба - внутри этого интервала.

Расстояние до xmax, мкм

Показания вольтметра, В Разность соседних показаний, В
0 3,30
-300 3,13 0,20
-600 2,60 0,50
-900 1,78 0,82
-1200 0,92 0,86 - максимум
-1500 0,29 0,63
-1800 0,18 0,11

Дальнейшие измерения расстояния будут вестись относительно точки х0, соответствующей напряжению (1,78+0,92)/2 = 1,36 В

  1. Находим напряжение в 10 точках, в две стороны от хс шагом 100 мкм. Измерение в каждой точке производится 6 раз.

    Результаты измерений и средние значения
    x, мкм

    U, B


    Uср, В
    -500 0,24 0,24 0,24 0,24 0,24 0,24 0,24
    -400 0,38 0,37 0,37 0,36 0,37 0,37 0,37
    -300 0,56 0,56 0,56 0,55 0,56

    0,56

    0,558333
    -200 0,8 0,79 0,79 0,78 0,79 0,79 0,79
    -100 1,06 1,04 1,05 1,04 1,05 1,05 1,048333
    0 1,36 1,36 1,34 1,33 1,34 1,34 1,345
    100 1,64 1,72 1,68 1,62 1,62 1,63 1,651667
    200 2 2,01 2 1,9 1,9 1,95 1,96
    300 2,25 2,3 2,26 2,2 2,19 2,2 2,233333
    400 2,5 2,55 2,52 2,47 2,45 2,46 2,491667
    500 2,77 2,74 2,73 2,66 2,66 2,69 2,708333
  2. Для каждого расстояния находим среднеквадратическое отклонение, относительную погрешность и доверительный интервал.

Расчет погрешностей

x, мкм Среднеквадр. отклонение Относительная погрешность Доверительный интервал
-500 0 0,00% 0,000000
-400

0,006324555

1,71% 0,016444
-300 0,004082483 0,73% 0,010614
-200 0,006324555 0,80% 0,016444
-100 0,007527727 0,72% 0,019572
0 0,012247449 0,91% 0,031843
100 0,040207794 2,43% 0,104540
200 0,050990195 2,60% 0,132575
300 0,043665394 1,96% 0,113530
400 0,038686776 1,55% 0,100586
500 0,045350487 1,67% 0,117911




  1. По средним значениям напряжения и с учетом доверительного интервала строим график функции преобразования датчика:

Г
рафик можно аппроксимировать кубическим полиномом

,где коэффициенты определяются по формулам:





где:

j= 0,1... - но­мер экс­пе­ри­мен­таль­ной точ­ки функ­ции пре­об­ра­зо­ва­ния;

n - чис­ло по­лу­чен­ных зна­че­ний функ­ции пре­об­ра­зо­ва­ния (n=11);

Aj - от­клик ВОД при j-ом зна­че­нии вход­но­го па­ра­мет­ра;

хi - при­ра­ще­ние вход­но­го па­ра­мет­ра (хi=0,1 мм).


Часть 2. Исследование влияния условий (типа поверхности) на функцию преобразования.

Измерения производятся для четырех типов поверхности: отражающая поверхность, белая бумага, черная бумага и текстолит. Измеряем напряжение на выходе датчика в точках от x=0 до значения, при котором напряжение будет максимальным, с шагом 200 мкм.

x, мкм Тип поверхности


отражающая белая черная текстолит
0 0,37 0,53 0,048 0,35
200 0,43 0,65 0,127 0,35
400 0,47 0,82 0,145 0,355
600 0,575 1,02 0,173 0,36
800 0,7 1,24 0,187 0,365
1000 0,89 1,44 0,2 0,372
1200 1,245 1,66 0,203 0,38
1400 1,62 1,8 0,21 0,38
1600 1,9 1,87 0,21 0,38
1800 2,15 1,93 0,205 0,385
2000 2,4 1,95 0,2 0,38
2200 2,5 1,94 0,19 0,375
2400 2,48 1,93 0,18 0,37
2600 2,47 1,92



Часть 3. Выводы.

Ра­бо­та во­ло­кон­но-оп­ти­че­ско­го дат­чи­ка за­ви­сит от со­стоя­ния по­верх­но­сти ра­бо­чей пла­сти­ны, ее ко­эф­фи­ци­ен­та от­ра­же­ния и сте­пе­ни рас­сеи­ва­ния све­та при от­ра­же­нии от по­верх­но­сти. Функ­ция пре­об­ра­зо­ва­ния дат­чи­ка ин­ди­ви­ду­аль­на для ка­ж­до­го со­че­та­ния дат­чик — по­верх­ность. Раз­мер (дли­на) ра­бо­че­го уча­ст­ка ха­рак­те­ри­сти­ки оп­ре­де­ля­ет­ся рас­сеи­ва­ни­ем све­та от по­верх­но­сти, а угол на­кло­на — ко­эф­фи­ци­ен­том от­ра­же­ния све­та. Дат­чик ха­рак­те­ри­зу­ет­ся пол­ным от­сут­ст­ви­ем влия­ния на объ­ект.

По­греш­ность (аб­со­лют­ная) мик­ро­мет­ра при из­ме­ре­ни­ях со­став­ля­ла 5 мкм. А по­греш­ность вольт­мет­ра — во вто­ром зна­ке по­сле за­пя­той, то есть при из­ме­ре­ни­ях с ме­тал­ли­че­ской пла­сти­ной она со­ста­ви­ла до 0,05 Воль­та. Вольт­метр об­ла­да­ет тре­мя с по­ло­ви­ной раз­ря­да­ми, но слу­чай­ная по­греш­ность из-за не­пре­рыв­но­го из­ме­не­ния по­ка­за­ний в дан­ном слу­чае ока­за­лась вы­ше.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита02:31:58 02 ноября 2021
.
.02:31:57 02 ноября 2021
.
.02:31:56 02 ноября 2021
.
.02:31:55 02 ноября 2021
.
.02:31:55 02 ноября 2021

Смотреть все комментарии (21)
Работы, похожие на Реферат: Метрология

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(294399)
Комментарии (4230)
Copyright © 2005 - 2024 BestReferat.ru / реклама на сайте