Часть
2.
х1х2х3х4
х5х6х7х8
(х1х8)(х2х8)(х3х8)(х4х8)
(х1х7)(х2х7)(х3х7)(х4х7)
(х1х6)(х2х6)(х3х6)(х4х6)
(х1х5)(х2х5)(х3х5)(х4х5)
х3х8 |
Х4х7 |
Y7 |
Р1 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
1 |
0 |
1 |
Y7=(а+b)+(a+b);
a=x3x8; b=x4x7 P1=ab
a |
b |
c |
P1 |
P2 |
Y6 |
P2’ |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
0 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
0 |
1 |
0 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
0 |
0 |
1 |
0 |
0 |
1 |
1 |
0 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
0 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
0 |
0 |
1 |
После
упрощения
Y6=(cp1+cp1)(ab+ab)+(cp1+cp1)(ab+ab)
P2=a(bp1+bp1)+p1(bc+bc)+abc
a=x2x8;b=x3x7;c=x4x6
P2’=abcp1
a |
b |
c |
d |
P2 |
P3 |
Y5 |
P3’ |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
1 |
1 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
1 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
1 |
1 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
1 |
1 |
1 |
1 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
1 |
0 |
1 |
1 |
1 |
0 |
0 |
1 |
1 |
1 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
1 |
1 |
0 |
0 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
1 |
1 |
1 |
1 |
0 |
1 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
1 |
0 |
1 |
1 |
1 |
0 |
1 |
0 |
1 |
1 |
0 |
1 |
1 |
0 |
1 |
0 |
1 |
1 |
1 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
1 |
0 |
1 |
1 |
0 |
1 |
0 |
1 |
1 |
0 |
1 |
1 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
1 |
1 |
0 |
0 |
1 |
1 |
0 |
1 |
1 |
1 |
0 |
1 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
После упрощения:
Y5=(dp2+dp2)(a(bc+bc)+a(bc+bc))+(dp2+dp2)c(ab+ab)
P3=bd(ac+ac)+cp2(ac+ab)+ab(cp2+cp2)+dp2(ab+ab)+abcp2
P3=bd(ac+ac)+cp2(ad+ad)+(ab+ab)(dp2+cp2)+abcp2
a=x1x8;b=x2x7;c=x3x6;d=x4x5
A |
b |
c |
P2’ |
P3 |
P4 |
Y4 |
P4’ |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
1 |
1 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
1 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
1 |
1 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
1 |
1 |
1 |
1 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
1 |
0 |
1 |
1 |
1 |
0 |
0 |
1 |
1 |
1 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
1 |
1 |
0 |
0 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
1 |
1 |
1 |
1 |
0 |
1 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
1 |
0 |
1 |
1 |
1 |
0 |
1 |
0 |
1 |
1 |
0 |
1 |
1 |
0 |
1 |
0 |
1 |
1 |
1 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
1 |
0 |
1 |
1 |
0 |
1 |
0 |
1 |
1 |
0 |
1 |
1 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
1 |
1 |
0 |
0 |
1 |
1 |
0 |
1 |
1 |
1 |
0 |
1 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
После упрощения:
Y4=(p2’p3+p2’p3)(abc+abc+abc)+ap2’p3(bc+bc)+abcp2’+abcp2’p3
P4=(p2’+p3)b(ac+ac)+abc(p2’+p3)+abp(p2’+c)+abc(p2’+p3)+abcp2’p3
P4’=p2’p3(bc+ac+ab)+abc(p2’+p3)
a=x1x7;b=x2x6;c=x3x5
A |
b |
P3’ |
P4 |
P5 |
Y3 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
0 |
1 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
0 |
1 |
0 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
0 |
После упрощения:
Y3=(ab+ab)(p3’p4+p3’p4)+(ab+ab)(p3’p4+p3’p4)
P5=p4b(a+p3’)+b(ap3’+p3’p4+ap4)
a=x1x6;b=x2x5
A |
P4’ |
P5 |
P6 |
Y2 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
0 |
1 |
0 |
1 |
1 |
1 |
0 |
1 |
0 |
0 |
0 |
1 |
1 |
0 |
1 |
1 |
0 |
1 |
1 |
0 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
После упрощений:
Y2=p4’(ap5+ap5)+p4’(ap5+ap5)
P6=
p4’p5+a(p4’+p5) a=x1x5
Y1=P6=
p4’p5+a(p4’+p5)
Y8=x4x8
Часть 1.
Р
Ти
Условия: 1.
(t+1)=2t+P(t)
2. Пусть
схема Р будет
вырабатывать
еденицу только
в нулевом, еденичном
состоянии и
в состоянии
«6».
3. Начальное
состояние
примем “11”
Число |
Х1 |
Х2 |
Х3 |
Х4 |
Х5 |
11 |
0 |
1 |
0 |
1 |
1 |
22 |
1 |
0 |
1 |
1 |
0 |
12 |
0 |
1 |
1 |
0 |
0 |
24 |
1 |
1 |
0 |
0 |
0 |
16 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
1 |
3 |
0 |
0 |
0 |
1 |
1 |
6 |
0 |
0 |
1 |
1 |
0 |
13 |
0 |
0 |
1 |
1 |
0 |
26 |
0 |
1 |
1 |
0 |
1 |
20 |
1 |
1 |
0 |
1 |
0 |
8 |
0 |
1 |
0 |
0 |
0 |
16 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Выберем
последовательность
чисел: “1” “3”
“6” “13” “26” “20”
“8” “16”
У=х1х2х3х4х5+х1х2х3х4х5+х1х2х3х4х5=х1х3х4х5(х2+х2)+х1х2х3х4х5=
=(х1+х3+х4+х5)+(х1+х2+х3+х4+х5)
|