.
Для начало приведём экспериментальный материал (который был получен с помощью программы Derive (по формуле 1.(см.ниже)): для нахождения делителей числа «a», программа делила число «a» на другие числа не превосходящие само число и если остаток от деления был равен 0, то число записывалось как делитель «a». ):
Ниже приведены все делители чисел от 1 до 1000:
[1, [1]]
[2, [1, 2]]
[3, [1, 3]]
[4, [1, 2, 4]]
[5, [1, 5]]
[6, [1, 2, 3, 6]]
[7, [1, 7]]
[8, [1, 2, 4, 8]]
[9, [1, 3, 9]]
[10, [1, 2, 5, 10]]
[11, [1, 11]]
[12, [1, 2, 3, 4, 6, 12]]
[13, [1, 13]]
[14, [1, 2, 7, 14]]
[15, [1, 3, 5, 15]]
[16, [1, 2, 4, 8, 16]]
[17, [1, 17]]
[18, [1, 2, 3, 6, 9, 18]]
[19, [1, 19]]
[20, [1, 2, 4, 5, 10, 20]]
[21, [1, 3, 7, 21]]
[22, [1, 2, 11, 22]]
[23, [1, 23]]
[24, [1, 2, 3, 4, 6, 8, 12, 24]]
[25, [1, 5, 25]]
[26, [1, 2, 13, 26]]
[27, [1, 3, 9, 27]]
[28, [1, 2, 4, 7, 14, 28]]
[29, [1, 29]]
[30, [1, 2, 3, 5, 6, 10, 15, 30]]
[31, [1, 31]]
[32, [1, 2, 4, 8, 16, 32]]
[33, [1, 3, 11, 33]]
[34, [1, 2, 17, 34]]
[35, [1, 5, 7, 35]]
[36, [1, 2, 3, 4, 6, 9, 12, 18, 36]]
[37, [1, 37]]
[38, [1, 2, 19, 38]]
[39, [1, 3, 13, 39]]
[40, [1, 2, 4, 5, 8, 10, 20, 40]]
[41, [1, 41]]
[42, [1, 2, 3, 6, 7, 14, 21, 42]]
[43, [1, 43]]
[44, [1, 2, 4, 11, 22, 44]]
[45, [1, 3, 5, 9, 15, 45]]
[46, [1, 2, 23, 46]]
[47, [1, 47]]
[48, [1, 2, 3, 4, 6, 8, 12, 16, 24, 48]]
[49, [1, 7, 49]]
[50, [1, 2, 5, 10, 25, 50]]
[51, [1, 3, 17, 51]]
[52, [1, 2, 4, 13, 26, 52]]
[53, [1, 53]]
[54, [1, 2, 3, 6, 9, 18, 27, 54]]
[55, [1, 5, 11, 55]]
[56, [1, 2, 4, 7, 8, 14, 28, 56]]
[57, [1, 3, 19, 57]]
[58, [1, 2, 29, 58]]
[59, [1, 59]]
[60, [1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60]]
[61, [1, 61]]
[62, [1, 2, 31, 62]]
[63, [1, 3, 7, 9, 21, 63]]
[64, [1, 2, 4, 8, 16, 32, 64]]
[65, [1, 5, 13, 65]]
[66, [1, 2, 3, 6, 11, 22, 33, 66]]
[67, [1, 67]]
[68, [1, 2, 4, 17, 34, 68]]
[69, [1, 3, 23, 69]]
[70, [1, 2, 5, 7, 10, 14, 35, 70]]
[71, [1, 71]]
[72, [1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72]]
[73, [1, 73]]
[74, [1, 2, 37, 74]]
[75, [1, 3, 5, 15, 25, 75]]
[76, [1, 2, 4, 19, 38, 76]]
[77, [1, 7, 11, 77]]
[78, [1, 2, 3, 6, 13, 26, 39, 78]]
[79, [1, 79]]
[80, [1, 2, 4, 5, 8, 10, 16, 20, 40, 80]]
[81, [1, 3, 9, 27, 81]]
[82, [1, 2, 41, 82]]
[83, [1, 83]]
[84, [1, 2, 3, 4, 6, 7, 12, 14, 21, 28, 42, 84]]
[85, [1, 5, 17, 85]]
[86, [1, 2, 43, 86]]
[87, [1, 3, 29, 87]]
[88, [1, 2, 4, 8, 11, 22, 44, 88]]
[89, [1, 89]]
[90, [1, 2, 3, 5, 6, 9, 10, 15, 18, 30, 45, 90]]
[91, [1, 7, 13, 91]]
[92, [1, 2, 4, 23, 46, 92]]
[93, [1, 3, 31, 93]]
[94, [1, 2, 47, 94]]
[95, [1, 5, 19, 95]]
[96, [1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 96]]
[97, [1, 97]]
[98, [1, 2, 7, 14, 49, 98]]
[99, [1, 3, 9, 11, 33, 99]]
[100, [1, 2, 4, 5, 10, 20, 25, 50, 100]]
[101, [1, 101]]
[102, [1, 2, 3, 6, 17, 34, 51, 102]]
[103, [1, 103]]
[104, [1, 2, 4, 8, 13, 26, 52, 104]]
[105, [1, 3, 5, 7, 15, 21, 35, 105]]
[106, [1, 2, 53, 106]]
[107, [1, 107]]
[108, [1, 2, 3, 4, 6, 9, 12, 18, 27, 36, 54, 108]]
[109, [1, 109]]
[110, [1, 2, 5, 10, 11, 22, 55, 110]]
[111, [1, 3, 37, 111]]
[112, [1, 2, 4, 7, 8, 14, 16, 28, 56, 112]]
[113, [1, 113]]
[114, [1, 2, 3, 6, 19, 38, 57, 114]]
[115, [1, 5, 23, 115]]
[116, [1, 2, 4, 29, 58, 116]]
[117, [1, 3, 9, 13, 39, 117]]
[118, [1, 2, 59, 118]]
[119, [1, 7, 17, 119]]
[120, [1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120]]
[121, [1, 11, 121]]
[122, [1, 2, 61, 122]]
[123, [1, 3, 41, 123]]
[124, [1, 2, 4, 31, 62, 124]]
[125, [1, 5, 25, 125]]
[126, [1, 2, 3, 6, 7, 9, 14, 18, 21, 42, 63, 126]]
[127, [1, 127]]
[128, [1, 2, 4, 8, 16, 32, 64, 128]]
[129, [1, 3, 43, 129]]
[130, [1, 2, 5, 10, 13, 26, 65, 130]]
[131, [1, 131]]
[132, [1, 2, 3, 4, 6, 11, 12, 22, 33, 44, 66, 132]]
[133, [1, 7, 19, 133]]
[134, [1, 2, 67, 134]]
[135, [1, 3, 5, 9, 15, 27, 45, 135]]
[136, [1, 2, 4, 8, 17, 34, 68, 136]]
[137, [1, 137]]
[138, [1, 2, 3, 6, 23, 46, 69, 138]]
[139, [1, 139]]
[140, [1, 2, 4, 5, 7, 10, 14, 20, 28, 35, 70, 140]]
[141, [1, 3, 47, 141]]
[142, [1, 2, 71, 142]]
[143, [1, 11, 13, 143]]
[144, [1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 36, 48, 72, 144]]
[145, [1, 5, 29, 145]]
[146, [1, 2, 73, 146]]
[147, [1, 3, 7, 21, 49, 147]]
[148, [1, 2, 4, 37, 74, 148]]
[149, [1, 149]]
[150, [1, 2, 3, 5, 6, 10, 15, 25, 30, 50, 75, 150]]
[151, [1, 151]]
[152, [1, 2, 4, 8, 19, 38, 76, 152]]
[153, [1, 3, 9, 17, 51, 153]]
[154, [1, 2, 7, 11, 14, 22, 77, 154]]
[155, [1, 5, 31, 155]]
[156, [1, 2, 3, 4, 6, 12, 13, 26, 39, 52, 78, 156]]
[157, [1, 157]]
[158, [1, 2, 79, 158]]
[159, [1, 3, 53, 159]]
[160, [1, 2, 4, 5, 8, 10, 16, 20, 32, 40, 80, 160]]
[161, [1, 7, 23, 161]]
[162, [1, 2, 3, 6, 9, 18, 27, 54, 81, 162]]
[163, [1, 163]]
[164, [1, 2, 4, 41, 82, 164]]
[165, [1, 3, 5, 11, 15, 33, 55, 165]]
[166, [1, 2, 83, 166]]
[167, [1, 167]]
[168, [1, 2, 3, 4, 6, 7, 8, 12, 14, 21, 24, 28, 42, 56, 84, 168]]
[169, [1, 13, 169]]
[170, [1, 2, 5, 10, 17, 34, 85, 170]]
[171, [1, 3, 9, 19, 57, 171]]
[172, [1, 2, 4, 43, 86, 172]]
[173, [1, 173]]
[174, [1, 2, 3, 6, 29, 58, 87, 174]]
[175, [1, 5, 7, 25, 35, 175]]
[176, [1, 2, 4, 8, 11, 16, 22, 44, 88, 176]]
[177, [1, 3, 59, 177]]
[178, [1, 2, 89, 178]]
[179, [1, 179]]
[180, [1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 30, 36, 45, 60, 90, 180]]
[181, [1, 181]]
[182, [1, 2, 7, 13, 14, 26, 91, 182]]
[183, [1, 3, 61, 183]]
[184, [1, 2, 4, 8, 23, 46, 92, 184]]
[185, [1, 5, 37, 185]]
[186, [1, 2, 3, 6, 31, 62, 93, 186]]
[187, [1, 11, 17, 187]]
[188, [1, 2, 4, 47, 94, 188]]
[189, [1, 3, 7, 9, 21, 27, 63, 189]]
[190, [1, 2, 5, 10, 19, 38, 95, 190]]
[191, [1, 191]]
[192, [1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 192]]
[193, [1, 193]]
[194, [1, 2, 97, 194]]
[195, [1, 3, 5, 13, 15, 39, 65, 195]]
[196, [1, 2, 4, 7, 14, 28, 49, 98, 196]]
[197, [1, 197]]
[198, [1, 2, 3, 6, 9, 11, 18, 22, 33, 66, 99, 198]]
[199, [1, 199]]
[200, [1, 2, 4, 5, 8, 10, 20, 25, 40, 50, 100, 200]]
[201, [1, 3, 67, 201]]
[202, [1, 2, 101, 202]]
[203, [1, 7, 29, 203]]
[204, [1, 2, 3, 4, 6, 12, 17, 34, 51, 68, 102, 204]]
[205, [1, 5, 41, 205]]
[206, [1, 2, 103, 206]]
[207, [1, 3, 9, 23, 69, 207]]
[208, [1, 2, 4, 8, 13, 16, 26, 52, 104, 208]]
[209, [1, 11, 19, 209]]
[210, [1, 2, 3, 5, 6, 7, 10, 14, 15, 21, 30, 35, 42, 70, 105, 210]]
[211, [1, 211]]
[212, [1, 2, 4, 53, 106, 212]]
[213, [1, 3, 71, 213]]
[214, [1, 2, 107, 214]]
[215, [1, 5, 43, 215]]
[216, [1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 27, 36, 54, 72, 108, 216]]
[217, [1, 7, 31, 217]]
[218, [1, 2, 109, 218]]
[219, [1, 3, 73, 219]]
[220, [1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110, 220]]
[221, [1, 13, 17, 221]]
[222, [1, 2, 3, 6, 37, 74, 111, 222]]
[223, [1, 223]]
[224, [1, 2, 4, 7, 8, 14, 16, 28, 32, 56, 112, 224]]
[225, [1, 3, 5, 9, 15, 25, 45, 75, 225]]
[226, [1, 2, 113, 226]]
[227, [1, 227]]
[228, [1, 2, 3, 4, 6, 12, 19, 38, 57, 76, 114, 228]]
[229, [1, 229]]
[230, [1, 2, 5, 10, 23, 46, 115, 230]]
[231, [1, 3, 7, 11, 21, 33, 77, 231]]
[232, [1, 2, 4, 8, 29, 58, 116, 232]]
[233, [1, 233]]
[234, [1, 2, 3, 6, 9, 13, 18, 26, 39, 78, 117, 234]]
[235, [1, 5, 47, 235]]
[236, [1, 2, 4, 59, 118, 236]]
[237, [1, 3, 79, 237]]
[238, [1, 2, 7, 14, 17, 34, 119, 238]]
[239, [1, 239]]
[240, [1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 40, 48, 60, 80, 120, 240]]
[241, [1, 241]]
[242, [1, 2, 11, 22, 121, 242]]
[243, [1, 3, 9, 27, 81, 243]]
[244, [1, 2, 4, 61, 122, 244]]
[245, [1, 5, 7, 35, 49, 245]]
[246, [1, 2, 3, 6, 41, 82, 123, 246]]
[247, [1, 13, 19, 247]]
[248, [1, 2, 4, 8, 31, 62, 124, 248]]
[249, [1, 3, 83, 249]]
[250, [1, 2, 5, 10, 25, 50, 125, 250]]
[251, [1, 251]]
[252, [1, 2, 3, 4, 6, 7, 9, 12, 14, 18, 21, 28, 36, 42, 63, 84, 126, 252]]
[253, [1, 11, 23, 253]]
[254, [1, 2, 127, 254]]
[255, [1, 3, 5, 15, 17, 51, 85, 255]]
[256, [1, 2, 4, 8, 16, 32, 64, 128, 256]]
[257, [1, 257]]
[258, [1, 2, 3, 6, 43, 86, 129, 258]]
[259, [1, 7, 37, 259]]
[260, [1, 2, 4, 5, 10, 13, 20, 26, 52, 65, 130, 260]]
[261, [1, 3, 9, 29, 87, 261]]
[262, [1, 2, 131, 262]]
[263, [1, 263]]
[264, [1, 2, 3, 4, 6, 8, 11, 12, 22, 24, 33, 44, 66, 88, 132, 264]]
[265, [1, 5, 53, 265]]
[266, [1, 2, 7, 14, 19, 38, 133, 266]]
[267, [1, 3, 89, 267]]
[268, [1, 2, 4, 67, 134, 268]]
[269, [1, 269]]
[270, [1, 2, 3, 5, 6, 9, 10, 15, 18, 27, 30, 45, 54, 90, 135, 270]]
[271, [1, 271]]
[272, [1, 2, 4, 8, 16, 17, 34, 68, 136, 272]]
[273, [1, 3, 7, 13, 21, 39, 91, 273]]
[274, [1, 2, 137, 274]]
[275, [1, 5, 11, 25, 55, 275]]
[276, [1, 2, 3, 4, 6, 12, 23, 46, 69, 92, 138, 276]]
[277, [1, 277]]
[278, [1, 2, 139, 278]]
[279, [1, 3, 9, 31, 93, 279]]
[280, [1, 2, 4, 5, 7, 8, 10, 14, 20, 28, 35, 40, 56, 70, 140, 280]]
[281, [1, 281]]
[282, [1, 2, 3, 6, 47, 94, 141, 282]]
[283, [1, 283]]
[284, [1, 2, 4, 71, 142, 284]]
[285, [1, 3, 5, 15, 19, 57, 95, 285]]
[286, [1, 2, 11, 13, 22, 26, 143, 286]]
[287, [1, 7, 41, 287]]
[288, [1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 32, 36, 48, 72, 96, 144, 288]]
[289, [1, 17, 289]]
[290, [1, 2, 5, 10, 29, 58, 145, 290]]
[291, [1, 3, 97, 291]]
[292, [1, 2, 4, 73, 146, 292]]
[293, [1, 293]]
[294, [1, 2, 3, 6, 7, 14, 21, 42, 49, 98, 147, 294]]
[295, [1, 5, 59, 295]]
[296, [1, 2, 4, 8, 37, 74, 148, 296]]
[297, [1, 3, 9, 11, 27, 33, 99, 297]]
[298, [1, 2, 149, 298]]
[299, [1, 13, 23, 299]]
[300, [1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 25, 30, 50, 60, 75, 100, 150, 300]]
[301, [1, 7, 43, 301]]
[302, [1, 2, 151, 302]]
[303, [1, 3, 101, 303]]
[304, [1, 2, 4, 8, 16, 19, 38, 76, 152, 304]]
[305, [1, 5, 61, 305]]
[306, [1, 2, 3, 6, 9, 17, 18, 34, 51, 102, 153, 306]]
[307, [1, 307]]
[308, [1, 2, 4, 7, 11, 14, 22, 28, 44, 77, 154, 308]]
[309, [1, 3, 103, 309]]
[310, [1, 2, 5, 10, 31, 62, 155, 310]]
[311, [1, 311]]
[312, [1, 2, 3, 4, 6, 8, 12, 13, 24, 26, 39, 52, 78, 104, 156, 312]]
[313, [1, 313]]
[314, [1, 2, 157, 314]]
[315, [1, 3, 5, 7, 9, 15, 21, 35, 45, 63, 105, 315]]
[316, [1, 2, 4, 79, 158, 316]]
[317, [1, 317]]
[318, [1, 2, 3, 6, 53, 106, 159, 318]]
[319, [1, 11, 29, 319]]
[320, [1, 2, 4, 5, 8, 10, 16, 20, 32, 40, 64, 80, 160, 320]]
[321, [1, 3, 107, 321]]
[322, [1, 2, 7, 14, 23, 46, 161, 322]]
[323, [1, 17, 19, 323]]
[324, [1, 2, 3, 4, 6, 9, 12, 18, 27, 36, 54, 81, 108, 162, 324]]
[325, [1, 5, 13, 25, 65, 325]]
[326, [1, 2, 163, 326]]
[327, [1, 3, 109, 327]]
[328, [1, 2, 4, 8, 41, 82, 164, 328]]
[329, [1, 7, 47, 329]]
[330, [1, 2, 3, 5, 6, 10, 11, 15, 22, 30, 33, 55, 66, 110, 165, 330]]
[331, [1, 331]]
[332, [1, 2, 4, 83, 166, 332]]
[333, [1, 3, 9, 37, 111, 333]]
[334, [1, 2, 167, 334]]
[335, [1, 5, 67, 335]]
[336, [1, 2, 3, 4, 6, 7, 8, 12, 14, 16, 21, 24, 28, 42, 48, 56, 84, 112, 168, 336]]
[337, [1, 337]]
[338, [1, 2, 13, 26, 169, 338]]
[339, [1, 3, 113, 339]]
[340, [1, 2, 4, 5, 10, 17, 20, 34, 68, 85, 170, 340]]
[341, [1, 11, 31, 341]]
[342, [1, 2, 3, 6, 9, 18, 19, 38, 57, 114, 171, 342]]
[343, [1, 7, 49, 343]]
[344, [1, 2, 4, 8, 43, 86, 172, 344]]
[345, [1, 3, 5, 15, 23, 69, 115, 345]]
[346, [1, 2, 173, 346]]
[347, [1, 347]]
[348, [1, 2, 3, 4, 6, 12, 29, 58, 87, 116, 174, 348]]
[349, [1, 349]]
[350, [1, 2, 5, 7, 10, 14, 25, 35, 50, 70, 175, 350]]
[351, [1, 3, 9, 13, 27, 39, 117, 351]]
[352, [1, 2, 4, 8, 11, 16, 22, 32, 44, 88, 176, 352]]
[353, [1, 353]]
[354, [1, 2, 3, 6, 59, 118, 177, 354]]
[355, [1, 5, 71, 355]]
[356, [1, 2, 4, 89, 178, 356]]
[357, [1, 3, 7, 17, 21, 51, 119, 357]]
[358, [1, 2, 179, 358]]
[359, [1, 359]]
[360, [1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 30, 36, 40, 45, 60, 72, 90, 120, 180, 360]]
[361, [1, 19, 361]]
[362, [1, 2, 181, 362]]
[363, [1, 3, 11, 33, 121, 363]]
[364, [1, 2, 4, 7, 13, 14, 26, 28, 52, 91, 182, 364]]
[365, [1, 5, 73, 365]]
[366, [1, 2, 3, 6, 61, 122, 183, 366]]
[367, [1, 367]]
[368, [1, 2, 4, 8, 16, 23, 46, 92, 184, 368]]
[369, [1, 3, 9, 41, 123, 369]]
[370, [1, 2, 5, 10, 37, 74, 185, 370]]
[371, [1, 7, 53, 371]]
[372, [1, 2, 3, 4, 6, 12, 31, 62, 93, 124, 186, 372]]
[373, [1, 373]]
[374, [1, 2, 11, 17, 22, 34, 187, 374]]
[375, [1, 3, 5, 15, 25, 75, 125, 375]]
[376, [1, 2, 4, 8, 47, 94, 188, 376]]
[377, [1, 13, 29, 377]]
[378, [1, 2, 3, 6, 7, 9, 14, 18, 21, 27, 42, 54, 63, 126, 189, 378]]
[379, [1, 379]]
[380, [1, 2, 4, 5, 10, 19, 20, 38, 76, 95, 190, 380]]
[381, [1, 3, 127, 381]]
[382, [1, 2, 191, 382]]
[383, [1, 383]]
[384, [1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 384]]
[385, [1, 5, 7, 11, 35, 55, 77, 385]]
[386, [1, 2, 193, 386]]
[387, [1, 3, 9, 43, 129, 387]]
[388, [1, 2, 4, 97, 194, 388]]
[389, [1, 389]]
[390, [1, 2, 3, 5, 6, 10, 13, 15, 26, 30, 39, 65, 78, 130, 195, 390]]
[391, [1, 17, 23, 391]]
[392, [1, 2, 4, 7, 8, 14, 28, 49, 56, 98, 196, 392]]
[393, [1, 3, 131, 393]]
[394, [1, 2, 197, 394]]
[395, [1, 5, 79, 395]]
[396, [1, 2, 3, 4, 6, 9, 11, 12, 18, 22, 33, 36, 44, 66, 99, 132, 198, 396]]
[397, [1, 397]]
[398, [1, 2, 199, 398]]
[399, [1, 3, 7, 19, 21, 57, 133, 399]]
[400, [1, 2, 4, 5, 8, 10, 16, 20, 25, 40, 50, 80, 100, 200, 400]]
[401, [1, 401]]
[402, [1, 2, 3, 6, 67, 134, 201, 402]]
[403, [1, 13, 31, 403]]
[404, [1, 2, 4, 101, 202, 404]]
[405, [1, 3, 5, 9, 15, 27, 45, 81, 135, 405]]
[406, [1, 2, 7, 14, 29, 58, 203, 406]]
[407, [1, 11, 37, 407]]
[408, [1, 2, 3, 4, 6, 8, 12, 17, 24, 34, 51, 68, 102, 136, 204, 408]]
[409, [1, 409]]
[410, [1, 2, 5, 10, 41, 82, 205, 410]]
[411, [1, 3, 137, 411]]
[412, [1, 2, 4, 103, 206, 412]]
[413, [1, 7, 59, 413]]
[414, [1, 2, 3, 6, 9, 18, 23, 46, 69, 138, 207, 414]]
[415, [1, 5, 83, 415]]
[416, [1, 2, 4, 8, 13, 16, 26, 32, 52, 104, 208, 416]]
[417, [1, 3, 139, 417]]
[418, [1, 2, 11, 19, 22, 38, 209, 418]]
[419, [1, 419]]
[420, [1, 2, 3, 4, 5, 6, 7, 10, 12, 14, 15, 20, 21, 28, 30, 35, 42, 60, 70, 84, 105, 140, 210, 420]]
[421, [1, 421]]
[422, [1, 2, 211, 422]]
[423, [1, 3, 9, 47, 141, 423]]
[424, [1, 2, 4, 8, 53, 106, 212, 424]]
[425, [1, 5, 17, 25, 85, 425]]
[426, [1, 2, 3, 6, 71, 142, 213, 426]]
[427, [1, 7, 61, 427]]
[428, [1, 2, 4, 107, 214, 428]]
[429, [1, 3, 11, 13, 33, 39, 143, 429]]
[430, [1, 2, 5, 10, 43, 86, 215, 430]]
[431, [1, 431]]
[432, [1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 36, 48, 54, 72, 108, 144, 216, 432]]
[433, [1, 433]]
[434, [1, 2, 7, 14, 31, 62, 217, 434]]
[435, [1, 3, 5, 15, 29, 87, 145, 435]]
[436, [1, 2, 4, 109, 218, 436]]
[437, [1, 19, 23, 437]]
[438, [1, 2, 3, 6, 73, 146, 219, 438]]
[439, [1, 439]]
[440, [1, 2, 4, 5, 8, 10, 11, 20, 22, 40, 44, 55, 88, 110, 220, 440]]
[441, [1, 3, 7, 9, 21, 49, 63, 147, 441]]
[442, [1, 2, 13, 17, 26, 34, 221, 442]]
[443, [1, 443]]
[444, [1, 2, 3, 4, 6, 12, 37, 74, 111, 148, 222, 444]]
[445, [1, 5, 89, 445]]
[446, [1, 2, 223, 446]]
[447, [1, 3, 149, 447]]
[448, [1, 2, 4, 7, 8, 14, 16, 28, 32, 56, 64, 112, 224, 448]]
[449, [1, 449]]
[450, [1, 2, 3, 5, 6, 9, 10, 15, 18, 25, 30, 45, 50, 75, 90, 150, 225, 450]]
[451, [1, 11, 41, 451]]
[452, [1, 2, 4, 113, 226, 452]]
[453, [1, 3, 151, 453]]
[454, [1, 2, 227, 454]]
[455, [1, 5, 7, 13, 35, 65, 91, 455]]
[456, [1, 2, 3, 4, 6, 8, 12, 19, 24, 38, 57, 76, 114, 152, 228, 456]]
[457, [1, 457]]
[458, [1, 2, 229, 458]]
[459, [1, 3, 9, 17, 27, 51, 153, 459]]
[460, [1, 2, 4, 5, 10, 20, 23, 46, 92, 115, 230, 460]]
[461, [1, 461]]
[462, [1, 2, 3, 6, 7, 11, 14, 21, 22, 33, 42, 66, 77, 154, 231, 462]]
[463, [1, 463]]
[464, [1, 2, 4, 8, 16, 29, 58, 116, 232, 464]]
[465, [1, 3, 5, 15, 31, 93, 155, 465]]
[466, [1, 2, 233, 466]]
[467, [1, 467]]
[468, [1, 2, 3, 4, 6, 9, 12, 13, 18, 26, 36, 39, 52, 78, 117, 156, 234, 468]]
[469, [1, 7, 67, 469]]
[470, [1, 2, 5, 10, 47, 94, 235, 470]]
[471, [1, 3, 157, 471]]
[472, [1, 2, 4, 8, 59, 118, 236, 472]]
[473, [1, 11, 43, 473]]
[474, [1, 2, 3, 6, 79, 158, 237, 474]]
[475, [1, 5, 19, 25, 95, 475]]
[476, [1, 2, 4, 7, 14, 17, 28, 34, 68, 119, 238, 476]]
[477, [1, 3, 9, 53, 159, 477]]
[478, [1, 2, 239, 478]]
[479, [1, 479]]
[480, [1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 32, 40, 48, 60, 80, 96, 120, 160, 240, 480]]
[481, [1, 13, 37, 481]]
[482, [1, 2, 241, 482]]
[483, [1, 3, 7, 21, 23, 69, 161, 483]]
[484, [1, 2, 4, 11, 22, 44, 121, 242, 484]]
[485, [1, 5, 97, 485]]
[486, [1, 2, 3, 6, 9, 18, 27, 54, 81, 162, 243, 486]]
[487, [1, 487]]
[488, [1, 2, 4, 8, 61, 122, 244, 488]]
[489, [1, 3, 163, 489]]
[490, [1, 2, 5, 7, 10, 14, 35, 49, 70, 98, 245, 490]]
[491, [1, 491]]
[492, [1, 2, 3, 4, 6, 12, 41, 82, 123, 164, 246, 492]]
[493, [1, 17, 29, 493]]
[494, [1, 2, 13, 19, 26, 38, 247, 494]]
[495, [1, 3, 5, 9, 11, 15, 33, 45, 55, 99, 165, 495]]
[496, [1, 2, 4, 8, 16, 31, 62, 124, 248, 496]]
[497, [1, 7, 71, 497]]
[498, [1, 2, 3, 6, 83, 166, 249, 498]]
[499, [1, 499]]
[500, [1, 2, 4, 5, 10, 20, 25, 50, 100, 125, 250, 500]]
[501, [1, 3, 167, 501]]
[502, [1, 2, 251, 502]]
[503, [1, 503]]
[504, [1, 2, 3, 4, 6, 7, 8, 9, 12, 14, 18, 21, 24, 28, 36, 42, 56, 63, 72, 84, 126, 168, 252, 504]]
[505, [1, 5, 101, 505]]
[506, [1, 2, 11, 22, 23, 46, 253, 506]]
[507, [1, 3, 13, 39, 169, 507]]
[508, [1, 2, 4, 127, 254, 508]]
[509, [1, 509]]
[510, [1, 2, 3, 5, 6, 10, 15, 17, 30, 34, 51, 85, 102, 170, 255, 510]]
[511, [1, 7, 73, 511]]
[512, [1, 2, 4, 8, 16, 32, 64, 128, 256, 512]]
[513, [1, 3, 9, 19, 27, 57, 171, 513]]
[514, [1, 2, 257, 514]]
[515, [1, 5, 103, 515]]
[516, [1, 2, 3, 4, 6, 12, 43, 86, 129, 172, 258, 516]]
[517, [1, 11, 47, 517]]
[518, [1, 2, 7, 14, 37, 74, 259, 518]]
[519, [1, 3, 173, 519]]
[520, [1, 2, 4, 5, 8, 10, 13, 20, 26, 40, 52, 65, 104, 130, 260, 520]]
[521, [1, 521]]
[522, [1, 2, 3, 6, 9, 18, 29, 58, 87, 174, 261, 522]]
[523, [1, 523]]
[524, [1, 2, 4, 131, 262, 524]]
[525, [1, 3, 5, 7, 15, 21, 25, 35, 75, 105, 175, 525]]
[526, [1, 2, 263, 526]]
[527, [1, 17, 31, 527]]
[528, [1, 2, 3, 4, 6, 8, 11, 12, 16, 22, 24, 33, 44, 48, 66, 88, 132, 176, 264, 528]]
[529, [1, 23, 529]]
[530, [1, 2, 5, 10, 53, 106, 265, 530]]
[531, [1, 3, 9, 59, 177, 531]]
[532, [1, 2, 4, 7, 14, 19, 28, 38, 76, 133, 266, 532]]
[533, [1, 13, 41, 533]]
[534, [1, 2, 3, 6, 89, 178, 267, 534]]
[535, [1, 5, 107, 535]]
[536, [1, 2, 4, 8, 67, 134, 268, 536]]
[537, [1, 3, 179, 537]]
[538, [1, 2, 269, 538]]
[539, [1, 7, 11, 49, 77, 539]]
[540, [1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 27, 30, 36, 45, 54, 60, 90, 108, 135, 180, 270, 540]]
[541, [1, 541]]
[542, [1, 2, 271, 542]]
[543, [1, 3, 181, 543]]
[544, [1, 2, 4, 8, 16, 17, 32, 34, 68, 136, 272, 544]]
[545, [1, 5, 109, 545]]
[546, [1, 2, 3, 6, 7, 13, 14, 21, 26, 39, 42, 78, 91, 182, 273, 546]]
[547, [1, 547]]
[548, [1, 2, 4, 137, 274, 548]]
[549, [1, 3, 9, 61, 183, 549]]
[550, [1, 2, 5, 10, 11, 22, 25, 50, 55, 110, 275, 550]]
[551, [1, 19, 29, 551]]
[552, [1, 2, 3, 4, 6, 8, 12, 23, 24, 46, 69, 92, 138, 184, 276, 552]]
[553, [1, 7, 79, 553]]
[554, [1, 2, 277, 554]]
[555, [1, 3, 5, 15, 37, 111, 185, 555]]
[556, [1, 2, 4, 139, 278, 556]]
[557, [1, 557]]
[558, [1, 2, 3, 6, 9, 18, 31, 62, 93, 186, 279, 558]]
[559, [1, 13, 43, 559]]
[560, [1, 2, 4, 5, 7, 8, 10, 14, 16, 20, 28, 35, 40, 56, 70, 80, 112, 140, 280, 560]]
[561, [1, 3, 11, 17, 33, 51, 187, 561]]
[562, [1, 2, 281, 562]]
[563, [1, 563]]
[564, [1, 2, 3, 4, 6, 12, 47, 94, 141, 188, 282, 564]]
[565, [1, 5, 113, 565]]
[566, [1, 2, 283, 566]]
[567, [1, 3, 7, 9, 21, 27, 63, 81, 189, 567]]
[568, [1, 2, 4, 8, 71, 142, 284, 568]]
[569, [1, 569]]
[570, [1, 2, 3, 5, 6, 10, 15, 19, 30, 38, 57, 95, 114, 190, 285, 570]]
[571, [1, 571]]
[572, [1, 2, 4, 11, 13, 22, 26, 44, 52, 143, 286, 572]]
[573, [1, 3, 191, 573]]
[574, [1, 2, 7, 14, 41, 82, 287, 574]]
[575, [1, 5, 23, 25, 115, 575]]
[576, [1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 32, 36, 48, 64, 72, 96, 144, 192, 288, 576]]
[577, [1, 577]]
[578, [1, 2, 17, 34, 289, 578]]
[579, [1, 3, 193, 579]]
[580, [1, 2, 4, 5, 10, 20, 29, 58, 116, 145, 290, 580]]
[581, [1, 7, 83, 581]]
[582, [1, 2, 3, 6, 97, 194, 291, 582]]
[583, [1, 11, 53, 583]]
[584, [1, 2, 4, 8, 73, 146, 292, 584]]
[585, [1, 3, 5, 9, 13, 15, 39, 45, 65, 117, 195, 585]]
[586, [1, 2, 293, 586]]
[587, [1, 587]]
[588, [1, 2, 3, 4, 6, 7, 12, 14, 21, 28, 42, 49, 84, 98, 147, 196, 294, 588]]
[589, [1, 19, 31, 589]]
[590, [1, 2, 5, 10, 59, 118, 295, 590]]
[591, [1, 3, 197, 591]]
[592, [1, 2, 4, 8, 16, 37, 74, 148, 296, 592]]
[593, [1, 593]]
[594, [1, 2, 3, 6, 9, 11, 18, 22, 27, 33, 54, 66, 99, 198, 297, 594]]
[595, [1, 5, 7, 17, 35, 85, 119, 595]]
[596, [1, 2, 4, 149, 298, 596]]
[597, [1, 3, 199, 597]]
[598, [1, 2, 13, 23, 26, 46, 299, 598]]
[599, [1, 599]]
[600, [1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 25, 30, 40, 50, 60, 75, 100, 120, 150, 200, 300, 600]]
[601, [1, 601]]
[602, [1, 2, 7, 14, 43, 86, 301, 602]]
[603, [1, 3, 9, 67, 201, 603]]
[604, [1, 2, 4, 151, 302, 604]]
[605, [1, 5, 11, 55, 121, 605]]
[606, [1, 2, 3, 6, 101, 202, 303, 606]]
[607, [1, 607]]
[608, [1, 2, 4, 8, 16, 19, 32, 38, 76, 152, 304, 608]]
[609, [1, 3, 7, 21, 29, 87, 203, 609]]
[610, [1, 2, 5, 10, 61, 122, 305, 610]]
[611, [1, 13, 47, 611]]
[612, [1, 2, 3, 4, 6, 9, 12, 17, 18, 34, 36, 51, 68, 102, 153, 204, 306, 612]]
[613, [1, 613]]
[614, [1, 2, 307, 614]]
[615, [1, 3, 5, 15, 41, 123, 205, 615]]
[616, [1, 2, 4, 7, 8, 11, 14, 22, 28, 44, 56, 77, 88, 154, 308, 616]]
[617, [1, 617]]
[618, [1, 2, 3, 6, 103, 206, 309, 618]]
[619, [1, 619]]
[620, [1, 2, 4, 5, 10, 20, 31, 62, 124, 155, 310, 620]]
[621, [1, 3, 9, 23, 27, 69, 207, 621]]
[622, [1, 2, 311, 622]]
[623, [1, 7, 89, 623]]
[624, [1, 2, 3, 4, 6, 8, 12, 13, 16, 24, 26, 39, 48, 52, 78, 104, 156, 208, 312, 624]]
[625, [1, 5, 25, 125, 625]]
[626, [1, 2, 313, 626]]
[627, [1, 3, 11, 19, 33, 57, 209, 627]]
[628, [1, 2, 4, 157, 314, 628]]
[629, [1, 17, 37, 629]]
[630, [1, 2, 3, 5, 6, 7, 9, 10, 14, 15, 18, 21, 30, 35, 42, 45, 63, 70, 90, 105, 126, 210, 315, 630]]
[631, [1, 631]]
[632, [1, 2, 4, 8, 79, 158, 316, 632]]
[633, [1, 3, 211, 633]]
[634, [1, 2, 317, 634]]
[635, [1, 5, 127, 635]]
[636, [1, 2, 3, 4, 6, 12, 53, 106, 159, 212, 318, 636]]
[637, [1, 7, 13, 49, 91, 637]]
[638, [1, 2, 11, 22, 29, 58, 319, 638]]
[639, [1, 3, 9, 71, 213, 639]]
[640, [1, 2, 4, 5, 8, 10, 16, 20, 32, 40, 64, 80, 128, 160, 320, 640]]
[641, [1, 641]]
[642, [1, 2, 3, 6, 107, 214, 321, 642]]
[643, [1, 643]]
[644, [1, 2, 4, 7, 14, 23, 28, 46, 92, 161, 322, 644]]
[645, [1, 3, 5, 15, 43, 129, 215, 645]]
[646, [1, 2, 17, 19, 34, 38, 323, 646]]
[647, [1, 647]]
[648, [1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 27, 36, 54, 72, 81, 108, 162, 216, 324, 648]]
[649, [1, 11, 59, 649]]
[650, [1, 2, 5, 10, 13, 25, 26, 50, 65, 130, 325, 650]]
[651, [1, 3, 7, 21, 31, 93, 217, 651]]
[652, [1, 2, 4, 163, 326, 652]]
[653, [1, 653]]
[654, [1, 2, 3, 6, 109, 218, 327, 654]]
[655, [1, 5, 131, 655]]
[656, [1, 2, 4, 8, 16, 41, 82, 164, 328, 656]]
[657, [1, 3, 9, 73, 219, 657]]
[658, [1, 2, 7, 14, 47, 94, 329, 658]]
[659, [1, 659]]
[660, [1, 2, 3, 4, 5, 6, 10, 11, 12, 15, 20, 22, 30, 33, 44, 55, 60, 66, 110, 132, 165, 220, 330, 660]]
[661, [1, 661]]
[662, [1, 2, 331, 662]]
[663, [1, 3, 13, 17, 39, 51, 221, 663]]
[664, [1, 2, 4, 8, 83, 166, 332, 664]]
[665, [1, 5, 7, 19, 35, 95, 133, 665]]
[666, [1, 2, 3, 6, 9, 18, 37, 74, 111, 222, 333, 666]]
[667, [1, 23, 29, 667]]
[668, [1, 2, 4, 167, 334, 668]]
[669, [1, 3, 223, 669]]
[670, [1, 2, 5, 10, 67, 134, 335, 670]]
[671, [1, 11, 61, 671]]
[672, [1, 2, 3, 4, 6, 7, 8, 12, 14, 16, 21, 24, 28, 32, 42, 48, 56, 84, 96, 112, 168, 224, 336, 672]]
[673, [1, 673]]
[674, [1, 2, 337, 674]]
[675, [1, 3, 5, 9, 15, 25, 27, 45, 75, 135, 225, 675]]
[676, [1, 2, 4, 13, 26, 52, 169, 338, 676]]
[677, [1, 677]]
[678, [1, 2, 3, 6, 113, 226, 339, 678]]
[679, [1, 7, 97, 679]]
[680, [1, 2, 4, 5, 8, 10, 17, 20, 34, 40, 68, 85, 136, 170, 340, 680]]
[681, [1, 3, 227, 681]]
[682, [1, 2, 11, 22, 31, 62, 341, 682]]
[683, [1, 683]]
[684, [1, 2, 3, 4, 6, 9, 12, 18, 19, 36, 38, 57, 76, 114, 171, 228, 342, 684]]
[685, [1, 5, 137, 685]]
[686, [1, 2, 7, 14, 49, 98, 343, 686]]
[687, [1, 3, 229, 687]]
[688, [1, 2, 4, 8, 16, 43, 86, 172, 344, 688]]
[689, [1, 13, 53, 689]]
[690, [1, 2, 3, 5, 6, 10, 15, 23, 30, 46, 69, 115, 138, 230, 345, 690]]
[691, [1, 691]]
[692, [1, 2, 4, 173, 346, 692]]
[693, [1, 3, 7, 9, 11, 21, 33, 63, 77, 99, 231, 693]]
[694, [1, 2, 347, 694]]
[695, [1, 5, 139, 695]]
[696, [1, 2, 3, 4, 6, 8, 12, 24, 29, 58, 87, 116, 174, 232, 348, 696]]
[697, [1, 17, 41, 697]]
[698, [1, 2, 349, 698]]
[699, [1, 3, 233, 699]]
[700, [1, 2, 4, 5, 7, 10, 14, 20, 25, 28, 35, 50, 70, 100, 140, 175, 350, 700]]
[701, [1, 701]]
[702, [1, 2, 3, 6, 9, 13, 18, 26, 27, 39, 54, 78, 117, 234, 351, 702]]
[703, [1, 19, 37, 703]]
[704, [1, 2, 4, 8, 11, 16, 22, 32, 44, 64, 88, 176, 352, 704]]
[705, [1, 3, 5, 15, 47, 141, 235, 705]]
[706, [1, 2, 353, 706]]
[707, [1, 7, 101, 707]]
[708, [1, 2, 3, 4, 6, 12, 59, 118, 177, 236, 354, 708]]
[709, [1, 709]]
[710, [1, 2, 5, 10, 71, 142, 355, 710]]
[711, [1, 3, 9, 79, 237, 711]]
[712, [1, 2, 4, 8, 89, 178, 356, 712]]
[713, [1, 23, 31, 713]]
[714, [1, 2, 3, 6, 7, 14, 17, 21, 34, 42, 51, 102, 119, 238, 357, 714]]
[715, [1, 5, 11, 13, 55, 65, 143, 715]]
[716, [1, 2, 4, 179, 358, 716]]
[717, [1, 3, 239, 717]]
[718, [1, 2, 359, 718]]
[719, [1, 719]]
[720, [1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 30, 36, 40, 45, 48, 60, 72, 80, 90, 120, 144, 180, 240, 360, 720]]
[721, [1, 7, 103, 721]]
[722, [1, 2, 19, 38, 361, 722]]
[723, [1, 3, 241, 723]]
[724, [1, 2, 4, 181, 362, 724]]
[725, [1, 5, 25, 29, 145, 725]]
[726, [1, 2, 3, 6, 11, 22, 33, 66, 121, 242, 363, 726]]
[727, [1, 727]]
[728, [1, 2, 4, 7, 8, 13, 14, 26, 28, 52, 56, 91, 104, 182, 364, 728]]
[729, [1, 3, 9, 27, 81, 243, 729]]
[730, [1, 2, 5, 10, 73, 146, 365, 730]]
[731, [1, 17, 43, 731]]
[732, [1, 2, 3, 4, 6, 12, 61, 122, 183, 244, 366, 732]]
[733, [1, 733]]
[734, [1, 2, 367, 734]]
[735, [1, 3, 5, 7, 15, 21, 35, 49, 105, 147, 245, 735]]
[736, [1, 2, 4, 8, 16, 23, 32, 46, 92, 184, 368, 736]]
[737, [1, 11, 67, 737]]
[738, [1, 2, 3, 6, 9, 18, 41, 82, 123, 246, 369, 738]]
[739, [1, 739]]
[740, [1, 2, 4, 5, 10, 20, 37, 74, 148, 185, 370, 740]]
[741, [1, 3, 13, 19, 39, 57, 247, 741]]
[742, [1, 2, 7, 14, 53, 106, 371, 742]]
[743, [1, 743]]
[744, [1, 2, 3, 4, 6, 8, 12, 24, 31, 62, 93, 124, 186, 248, 372, 744]]
[745, [1, 5, 149, 745]]
[746, [1, 2, 373, 746]]
[747, [1, 3, 9, 83, 249, 747]]
[748, [1, 2, 4, 11, 17, 22, 34, 44, 68, 187, 374, 748]]
[749, [1, 7, 107, 749]]
[750, [1, 2, 3, 5, 6, 10, 15, 25, 30, 50, 75, 125, 150, 250, 375, 750]]
[751, [1, 751]]
[752, [1, 2, 4, 8, 16, 47, 94, 188, 376, 752]]
[753, [1, 3, 251, 753]]
[754, [1, 2, 13, 26, 29, 58, 377, 754]]
[755, [1, 5, 151, 755]]
[756, [1, 2, 3, 4, 6, 7, 9, 12, 14, 18, 21, 27, 28, 36, 42, 54, 63, 84, 108, 126, 189, 252, 378, 756]]
[757, [1, 757]]
[758, [1, 2, 379, 758]]
[759, [1, 3, 11, 23, 33, 69, 253, 759]]
[760, [1, 2, 4, 5, 8, 10, 19, 20, 38, 40, 76, 95, 152, 190, 380, 760]]
[761, [1, 761]]
[762, [1, 2, 3, 6, 127, 254, 381, 762]]
[763, [1, 7, 109, 763]]
[764, [1, 2, 4, 191, 382, 764]]
[765, [1, 3, 5, 9, 15, 17, 45, 51, 85, 153, 255, 765]]
[766, [1, 2, 383, 766]]
[767, [1, 13, 59, 767]]
[768, [1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 768]]
[769, [1, 769]]
[770, [1, 2, 5, 7, 10, 11, 14, 22, 35, 55, 70, 77, 110, 154, 385, 770]]
[771, [1, 3, 257, 771]]
[772, [1, 2, 4, 193, 386, 772]]
[773, [1, 773]]
[774, [1, 2, 3, 6, 9, 18, 43, 86, 129, 258, 387, 774]]
[775, [1, 5, 25, 31, 155, 775]]
[776, [1, 2, 4, 8, 97, 194, 388, 776]]
[777, [1, 3, 7, 21, 37, 111, 259, 777]]
[778, [1, 2, 389, 778]]
[779, [1, 19, 41, 779]]
[780, [1, 2, 3, 4, 5, 6, 10, 12, 13, 15, 20, 26, 30, 39, 52, 60, 65, 78, 130, 156, 195, 260, 390, 780]]
[781, [1, 11, 71, 781]]
[782, [1, 2, 17, 23, 34, 46, 391, 782]]
[783, [1, 3, 9, 27, 29, 87, 261, 783]]
[784, [1, 2, 4, 7, 8, 14, 16, 28, 49, 56, 98, 112, 196, 392, 784]]
[785, [1, 5, 157, 785]]
[786, [1, 2, 3, 6, 131, 262, 393, 786]]
[787, [1, 787]]
[788, [1, 2, 4, 197, 394, 788]]
[789, [1, 3, 263, 789]]
[790, [1, 2, 5, 10, 79, 158, 395, 790]]
[791, [1, 7, 113, 791]]
[792, [1, 2, 3, 4, 6, 8, 9, 11, 12, 18, 22, 24, 33, 36, 44, 66, 72, 88, 99, 132, 198, 264, 396, 792]]
[793, [1, 13, 61, 793]]
[794, [1, 2, 397, 794]]
[795, [1, 3, 5, 15, 53, 159, 265, 795]]
[796, [1, 2, 4, 199, 398, 796]]
[797, [1, 797]]
[798, [1, 2, 3, 6, 7, 14, 19, 21, 38, 42, 57, 114, 133, 266, 399, 798]]
[799, [1, 17, 47, 799]]
[800, [1, 2, 4, 5, 8, 10, 16, 20, 25, 32, 40, 50, 80, 100, 160, 200, 400, 800]]
[801, [1, 3, 9, 89, 267, 801]]
[802, [1, 2, 401, 802]]
[803, [1, 11, 73, 803]]
[804, [1, 2, 3, 4, 6, 12, 67, 134, 201, 268, 402, 804]]
[805, [1, 5, 7, 23, 35, 115, 161, 805]]
[806, [1, 2, 13, 26, 31, 62, 403, 806]]
[807, [1, 3, 269, 807]]
[808, [1, 2, 4, 8, 101, 202, 404, 808]]
[809, [1, 809]]
[810, [1, 2, 3, 5, 6, 9, 10, 15, 18, 27, 30, 45, 54, 81, 90, 135, 162, 270, 405, 810]]
[811, [1, 811]]
[812, [1, 2, 4, 7, 14, 28, 29, 58, 116, 203, 406, 812]]
[813, [1, 3, 271, 813]]
[814, [1, 2, 11, 22, 37, 74, 407, 814]]
[815, [1, 5, 163, 815]]
[816, [1, 2, 3, 4, 6, 8, 12, 16, 17, 24, 34, 48, 51, 68, 102, 136, 204, 272, 408, 816]]
[817, [1, 19, 43, 817]]
[818, [1, 2, 409, 818]]
[819, [1, 3, 7, 9, 13, 21, 39, 63, 91, 117, 273, 819]]
[820, [1, 2, 4, 5, 10, 20, 41, 82, 164, 205, 410, 820]]
[821, [1, 821]]
[822, [1, 2, 3, 6, 137, 274, 411, 822]]
[823, [1, 823]]
[824, [1, 2, 4, 8, 103, 206, 412, 824]]
[825, [1, 3, 5, 11, 15, 25, 33, 55, 75, 165, 275, 825]]
[826, [1, 2, 7, 14, 59, 118, 413, 826]]
[827, [1, 827]]
[828, [1, 2, 3, 4, 6, 9, 12, 18, 23, 36, 46, 69, 92, 138, 207, 276, 414, 828]]
[829, [1, 829]]
[830, [1, 2, 5, 10, 83, 166, 415, 830]]
[831, [1, 3, 277, 831]]
[832, [1, 2, 4, 8, 13, 16, 26, 32, 52, 64, 104, 208, 416, 832]]
[833, [1, 7, 17, 49, 119, 833]]
[834, [1, 2, 3, 6, 139, 278, 417, 834]]
[835, [1, 5, 167, 835]]
[836, [1, 2, 4, 11, 19, 22, 38, 44, 76, 209, 418, 836]]
[837, [1, 3, 9, 27, 31, 93, 279, 837]]
[838, [1, 2, 419, 838]]
[839, [1, 839]]
[840, [1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 15, 20, 21, 24, 28, 30, 35, 40, 42, 56, 60, 70, 84, 105, 120, 140, 168, 210, 280, 420, 840]]
[841, [1, 29, 841]]
[842, [1, 2, 421, 842]]
[843, [1, 3, 281, 843]]
[844, [1, 2, 4, 211, 422, 844]]
[845, [1, 5, 13, 65, 169, 845]]
[846, [1, 2, 3, 6, 9, 18, 47, 94, 141, 282, 423, 846]]
[847, [1, 7, 11, 77, 121, 847]]
[848, [1, 2, 4, 8, 16, 53, 106, 212, 424, 848]]
[849, [1, 3, 283, 849]]
[850, [1, 2, 5, 10, 17, 25, 34, 50, 85, 170, 425, 850]]
[851, [1, 23, 37, 851]]
[852, [1, 2, 3, 4, 6, 12, 71, 142, 213, 284, 426, 852]]
[853, [1, 853]]
[854, [1, 2, 7, 14, 61, 122, 427, 854]]
[855, [1, 3, 5, 9, 15, 19, 45, 57, 95, 171, 285, 855]]
[856, [1, 2, 4, 8, 107, 214, 428, 856]]
[857, [1, 857]]
[858, [1, 2, 3, 6, 11, 13, 22, 26, 33, 39, 66, 78, 143, 286, 429, 858]]
[859, [1, 859]]
[860, [1, 2, 4, 5, 10, 20, 43, 86, 172, 215, 430, 860]]
[861, [1, 3, 7, 21, 41, 123, 287, 861]]
[862, [1, 2, 431, 862]]
[863, [1, 863]]
[864, [1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 32, 36, 48, 54, 72, 96, 108, 144, 216, 288, 432, 864]]
[865, [1, 5, 173, 865]]
[866, [1, 2, 433, 866]]
[867, [1, 3, 17, 51, 289, 867]]
[868, [1, 2, 4, 7, 14, 28, 31, 62, 124, 217, 434, 868]]
[869, [1, 11, 79, 869]]
[870, [1, 2, 3, 5, 6, 10, 15, 29, 30, 58, 87, 145, 174, 290, 435, 870]]
[871, [1, 13, 67, 871]]
[872, [1, 2, 4, 8, 109, 218, 436, 872]]
[873, [1, 3, 9, 97, 291, 873]]
[874, [1, 2, 19, 23, 38, 46, 437, 874]]
[875, [1, 5, 7, 25, 35, 125, 175, 875]]
[876, [1, 2, 3, 4, 6, 12, 73, 146, 219, 292, 438, 876]]
[877, [1, 877]]
[878, [1, 2, 439, 878]]
[879, [1, 3, 293, 879]]
[880, [1, 2, 4, 5, 8, 10, 11, 16, 20, 22, 40, 44, 55, 80, 88, 110, 176, 220, 440, 880]]
[881, [1, 881]]
[882, [1, 2, 3, 6, 7, 9, 14, 18, 21, 42, 49, 63, 98, 126, 147, 294, 441, 882]]
[883, [1, 883]]
[884, [1, 2, 4, 13, 17, 26, 34, 52, 68, 221, 442, 884]]
[885, [1, 3, 5, 15, 59, 177, 295, 885]]
[886, [1, 2, 443, 886]]
[887, [1, 887]]
[888, [1, 2, 3, 4, 6, 8, 12, 24, 37, 74, 111, 148, 222, 296, 444, 888]]
[889, [1, 7, 127, 889]]
[890, [1, 2, 5, 10, 89, 178, 445, 890]]
[891, [1, 3, 9, 11, 27, 33, 81, 99, 297, 891]]
[892, [1, 2, 4, 223, 446, 892]]
[893, [1, 19, 47, 893]]
[894, [1, 2, 3, 6, 149, 298, 447, 894]]
[895, [1, 5, 179, 895]]
[896, [1, 2, 4, 7, 8, 14, 16, 28, 32, 56, 64, 112, 128, 224, 448, 896]]
[897, [1, 3, 13, 23, 39, 69, 299, 897]]
[898, [1, 2, 449, 898]]
[899, [1, 29, 31, 899]]
[900, [1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 25, 30, 36, 45, 50, 60, 75, 90, 100, 150, 180, 225, 300, 450, 900]]
[901, [1, 17, 53, 901]]
[902, [1, 2, 11, 22, 41, 82, 451, 902]]
[903, [1, 3, 7, 21, 43, 129, 301, 903]]
[904, [1, 2, 4, 8, 113, 226, 452, 904]]
[905, [1, 5, 181, 905]]
[906, [1, 2, 3, 6, 151, 302, 453, 906]]
[907, [1, 907]]
[908, [1, 2, 4, 227, 454, 908]]
[909, [1, 3, 9, 101, 303, 909]]
[910, [1, 2, 5, 7, 10, 13, 14, 26, 35, 65, 70, 91, 130, 182, 455, 910]]
[911, [1, 911]]
[912, [1, 2, 3, 4, 6, 8, 12, 16, 19, 24, 38, 48, 57, 76, 114, 152, 228, 304, 456, 912]]
[913, [1, 11, 83, 913]]
[914, [1, 2, 457, 914]]
[[915, [1, 3, 5, 15, 61, 183, 305, 915]]
[916, [1, 2, 4, 229, 458, 916]]
[917, [1, 7, 131, 917]]
[918, [1, 2, 3, 6, 9, 17, 18, 27, 34, 51, 54, 102, 153, 306, 459, 918]]
[919, [1, 919]]
[920, [1, 2, 4, 5, 8, 10, 20, 23, 40, 46, 92, 115, 184, 230, 460, 920]]
[921, [1, 3, 307, 921]]
[922, [1, 2, 461, 922]]
[923, [1, 13, 71, 923]]
[924, [1, 2, 3, 4, 6, 7, 11, 12, 14, 21, 22, 28, 33, 42, 44, 66, 77, 84, 132, 154, 231, 308, 462, 924]]
[925, [1, 5, 25, 37, 185, 925]]
[926, [1, 2, 463, 926]]
[927, [1, 3, 9, 103, 309, 927]]
[928, [1, 2, 4, 8, 16, 29, 32, 58, 116, 232, 464, 928]]
[929, [1, 929]]
[930, [1, 2, 3, 5, 6, 10, 15, 30, 31, 62, 93, 155, 186, 310, 465, 930]]
[931, [1, 7, 19, 49, 133, 931]]
[932, [1, 2, 4, 233, 466, 932]]
[933, [1, 3, 311, 933]]
[934, [1, 2, 467, 934]]
[935, [1, 5, 11, 17, 55, 85, 187, 935]]
[936, [1, 2, 3, 4, 6, 8, 9, 12, 13, 18, 24, 26, 36, 39, 52, 72, 78, 104, 117, 156, 234, 312, 468, 936]]
[937, [1, 937]]
[938, [1, 2, 7, 14, 67, 134, 469, 938]]
[939, [1, 3, 313, 939]]
[940, [1, 2, 4, 5, 10, 20, 47, 94, 188, 235, 470, 940]]
[941, [1, 941]]
[942, [1, 2, 3, 6, 157, 314, 471, 942]]
[943, [1, 23, 41, 943]]
[944, [1, 2, 4, 8, 16, 59, 118, 236, 472, 944]]
[945, [1, 3, 5, 7, 9, 15, 21, 27, 35, 45, 63, 105, 135, 189, 315, 945]]
[946, [1, 2, 11, 22, 43, 86, 473, 946]]
[947, [1, 947]]
[948, [1, 2, 3, 4, 6, 12, 79, 158, 237, 316, 474, 948]]
[949, [1, 13, 73, 949]]
[950, [1, 2, 5, 10, 19, 25, 38, 50, 95, 190, 475, 950]]
[951, [1, 3, 317, 951]]
[952, [1, 2, 4, 7, 8, 14, 17, 28, 34, 56, 68, 119, 136, 238, 476, 952]]
[953, [1, 953]]
[954, [1, 2, 3, 6, 9, 18, 53, 106, 159, 318, 477, 954]]
[955, [1, 5, 191, 955]]
[956, [1, 2, 4, 239, 478, 956]]
[957, [1, 3, 11, 29, 33, 87, 319, 957]]
[958, [1, 2, 479, 958]]
[959, [1, 7, 137, 959]]
[960, [1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 32, 40, 48, 60, 64, 80, 96, 120, 160, 192, 240, 320, 480, 960]]
[961, [1, 31, 961]]
[962, [1, 2, 13, 26, 37, 74, 481, 962]]
[963, [1, 3, 9, 107, 321, 963]]
[964, [1, 2, 4, 241, 482, 964]]
[965, [1, 5, 193, 965]]
[966, [1, 2, 3, 6, 7, 14, 21, 23, 42, 46, 69, 138, 161, 322, 483, 966]]
[967, [1, 967]]
[968, [1, 2, 4, 8, 11, 22, 44, 88, 121, 242, 484, 968]]
[969, [1, 3, 17, 19, 51, 57, 323, 969]]
[970, [1, 2, 5, 10, 97, 194, 485, 970]]
[971, [1, 971]]
[972, [1, 2, 3, 4, 6, 9, 12, 18, 27, 36, 54, 81, 108, 162, 243, 324, 486, 972]]
[973, [1, 7, 139, 973]]
[974, [1, 2, 487, 974]]
[975, [1, 3, 5, 13, 15, 25, 39, 65, 75, 195, 325, 975]]
[976, [1, 2, 4, 8, 16, 61, 122, 244, 488, 976]]
[977, [1, 977]]
[978, [1, 2, 3, 6, 163, 326, 489, 978]]
[979, [1, 11, 89, 979]]
[980, [1, 2, 4, 5, 7, 10, 14, 20, 28, 35, 49, 70, 98, 140, 196, 245, 490, 980]]
[981, [1, 3, 9, 109, 327, 981]]
[982, [1, 2, 491, 982]]
[983, [1, 983]]
[984, [1, 2, 3, 4, 6, 8, 12, 24, 41, 82, 123, 164, 246, 328, 492, 984]]
[985, [1, 5, 197, 985]]
[986, [1, 2, 17, 29, 34, 58, 493, 986]]
[987, [1, 3, 7, 21, 47, 141, 329, 987]]
[988, [1, 2, 4, 13, 19, 26, 38, 52, 76, 247, 494, 988]]
[989, [1, 23, 43, 989]]
[990, [1, 2, 3, 5, 6, 9, 10, 11, 15, 18, 22, 30, 33, 45, 55, 66, 90, 99, 110, 165, 198, 330, 495, 990]]
[991, [1, 991]]
[992, [1, 2, 4, 8, 16, 31, 32, 62, 124, 248, 496, 992]]
[993, [1, 3, 331, 993]]
[994, [1, 2, 7, 14, 71, 142, 497, 994]]
[995, [1, 5, 199, 995]]
[996, [1, 2, 3, 4, 6, 12, 83, 166, 249, 332, 498, 996]]
[997, [1, 997]]
[998, [1, 2, 499, 998]]
[999, [1, 3, 9, 27, 37, 111, 333, 999]]
[1000, [1, 2, 4, 5, 8, 10, 20, 25, 40, 50, 100, 125, 200, 250, 500, 1000]]]
Теперь несложно посчитать и сумму делителей чисел от 1 до 1000(которые тоже были получены с помощью программы Derive (по формуле 2.), теперь делители «a» просто складывались):
[1, 1]
[2, 3]
[3, 4]
[4, 7]
[5, 6]
[6, 12]
[7, 8]
[8, 15]
[9, 13]
[10, 18]
[11, 12]
[12, 28]
[13, 14]
[14, 24]
[15, 24]
[16, 31]
[17, 18]
[18, 39]
[19, 20]
[20, 42]
[21, 32]
[22, 36]
[23, 24]
[24, 60]
[25, 31]
[26, 42]
[27, 40]
[28, 56]
[29, 30]
[30, 72]
[31, 32]
[32, 63]
[33, 48]
[34, 54]
[35, 48]
[36, 91]
[37, 38]
[38, 60]
[39, 56]
[40, 90]
[41, 42]
[42, 96]
[43, 44]
[44, 84]
[45, 78]
[46, 72]
[47, 48]
[48, 124]
[49, 57]
[50, 93]
[51, 72]
[52, 98]
[53, 54]
[54, 120]
[55, 72]
[56, 120]
[57, 80]
[58, 90]
[59, 60]
[60, 168]
[61, 62]
[62, 96]
[63, 104]
[64, 127]
[65, 84]
[66, 144]
[67, 68]
[68, 126]
[69, 96]
[70, 144]
[71, 72]
[72, 195]
[73, 74]
[74, 114]
[75, 124]
[76, 140]
[77, 96]
[78, 168]
[79, 80]
[80, 186]
[81, 121]
[82, 126]
[83, 84]
[84, 224]
[85, 108]
[86, 132]
[87, 120]
[88, 180]
[89, 90]
[90, 234]
[91, 112]
[92, 168]
[93, 128]
[94, 144]
[95, 120]
[96, 252]
[97, 98]
[98, 171]
[99, 156]
[100, 217]
[101, 102]
[102, 216]
[103, 104]
[104, 210]
[105, 192]
[106, 162]
[107, 108]
[108, 280]
[109, 110]
[110, 216]
[111, 152]
[112, 248]
[113, 114]
[114, 240]
[115, 144]
[116, 210]
[117, 182]
[118, 180]
[119, 144]
[120, 360]
[121, 133]
[122, 186]
[123, 168]
[124, 224]
[125, 156]
[126, 312]
[127, 128]
[128, 255]
[129, 176]
[130, 252]
[131, 132]
[132, 336]
[133, 160]
[134, 204]
[135, 240]
[136, 270]
[137, 138]
[138, 288]
[139, 140]
[140, 336]
[141, 192]
[142, 216]
[143, 168]
[144, 403]
[145, 180]
[146, 222]
[147, 228]
[148, 266]
[149, 150]
[150, 372]
[151, 152]
[152, 300]
[153, 234]
[154, 288]
[155, 192]
[156, 392]
[157, 158]
[158, 240]
[159, 216]
[160, 378]
[161, 192]
[162, 363]
[163, 164]
[164, 294]
[165, 288]
[166, 252]
[167, 168]
[168, 480]
[169, 183]
[170, 324]
[171, 260]
[172, 308]
[173, 174]
[174, 360]
[175, 248]
[176, 372]
[177, 240]
[178, 270]
[179, 180]
[180, 546]
[181, 182]
[182, 336]
[183, 248]
[184, 360]
[185, 228]
[186, 384]
[187, 216]
[188, 336]
[189, 320]
[190, 360]
[191, 192]
[192, 508]
[193, 194]
[194, 294]
[195, 336]
[196, 399]
[197, 198]
[198, 468]
[199, 200]
[200, 465]
[201, 272]
[202, 306]
[203, 240]
[204, 504]
[205, 252]
[206, 312]
[207, 312]
[208, 434]
[209, 240]
[210, 576]
[211, 212]
[212, 378]
[213, 288]
[214, 324]
[215, 264]
[216, 600]
[217, 256]
[218, 330]
[219, 296]
[220, 504]
[221, 252]
[222, 456]
[223, 224]
[224, 504]
[225, 403]
[226, 342]
[227, 228]
[228, 560]
[229, 230]
[230, 432]
[231, 384]
[232, 450]
[233, 234]
[234, 546]
[235, 288]
[236, 420]
[237, 320]
[238, 432]
[239, 240]
[240, 744]
[241, 242]
[242, 399]
[243, 364]
[244, 434]
[245, 342]
[246, 504]
[247, 280]
[248, 480]
[249, 336]
[250, 468]
[251, 252]
[252, 728]
[253, 288]
[254, 384]
[255, 432]
[256, 511]
[257, 258]
[258, 528]
[259, 304]
[260, 588]
[261, 390]
[262, 396]
[263, 264]
[264, 720]
[265, 324]
[266, 480]
[267, 360]
[268, 476]
[269, 270]
[270, 720]
[271, 272]
[272, 558]
[273, 448]
[274, 414]
[275, 372]
[276, 672]
[277, 278]
[278, 420]
[279, 416]
[280, 720]
[281, 282]
[282, 576]
[283, 284]
[284, 504]
[285, 480]
[286, 504]
[287, 336]
[288, 819]
[289, 307]
[290, 540]
[291, 392]
[292, 518]
[293, 294]
[294, 684]
[295, 360]
[296, 570]
[297, 480]
[298, 450]
[299, 336]
[300, 868]
[301, 352]
[302, 456]
[303, 408]
[304, 620]
[305, 372]
[306, 702]
[307, 308]
[308, 672]
[309, 416]
[310, 576]
[311, 312]
[312, 840]
[313, 314]
[314, 474]
[315, 624]
[316, 560]
[317, 318]
[318, 648]
[319, 360]
[320, 762]
[321, 432]
[322, 576]
[323, 360]
[324, 847]
[325, 434]
[326, 492]
[327, 440]
[328, 630]
[329, 384]
[330, 864]
[331, 332]
[332, 588]
[333, 494]
[334, 504]
[335, 408]
[336, 992]
[337, 338]
[338, 549]
[339, 456]
[340, 756]
[341, 384]
[342, 780]
[343, 400]
[344, 660]
[345, 576]
[346, 522]
[347, 348]
[348, 840]
[349, 350]
[350, 744]
[351, 560]
[352, 756]
[353, 354]
[354, 720]
[355, 432]
[356, 630]
[357, 576]
[358, 540]
[359, 360]
[360, 1170]
[361, 381]
[362, 546]
[363, 532]
[364, 784]
[365, 444]
[366, 744]
[367, 368]
[368, 744]
[369, 546]
[370, 684]
[371, 432]
[372, 896]
[373, 374]
[374, 648]
[375, 624]
[376, 720]
[377, 420]
[378, 960]
[379, 380]
[380, 840]
[381, 512]
[382, 576]
[383, 384]
[384, 1020]
[385, 576]
[386, 582]
[387, 572]
[388, 686]
[389, 390]
[390, 1008]
[391, 432]
[392, 855]
[393, 528]
[394, 594]
[395, 480]
[396, 1092]
[397, 398]
[398, 600]
[399, 640]
[400, 961]
[401, 402]
[402, 816]
[403, 448]
[404, 714]
[405, 726]
[406, 720]
[407, 456]
[408, 1080]
[409, 410]
[410, 756]
[411, 552]
[412, 728]
[413, 480]
[414, 936]
[415, 504]
[416, 882]
[417, 560]
[418, 720]
[419, 420]
[420, 1344]
[421, 422]
[422, 636]
[423, 624]
[424, 810]
[425, 558]
[426, 864]
[427, 496]
[428, 756]
[429, 672]
[430, 792]
[431, 432]
[432, 1240]
[433, 434]
[434, 768]
[435, 720]
[436, 770]
[437, 480]
[438, 888]
[439, 440]
[440, 1080]
[441, 741]
[442, 756]
[443, 444]
[444, 1064]
[445, 540]
[446, 672]
[447, 600]
[448, 1016]
[449, 450]
[450, 1209]
[451, 504]
[452, 798]
[453, 608]
[454, 684]
[455, 672]
[456, 1200]
[457, 458]
[458, 690]
[459, 720]
[460, 1008]
[461, 462]
[462, 1152]
[463, 464]
[464, 930]
[465, 768]
[466, 702]
[467, 468]
[468, 1274]
[469, 544]
[470, 864]
[471, 632]
[472, 900]
[473, 528]
[474, 960]
[475, 620]
[476, 1008]
[477, 702]
[478, 720]
[479, 480]
[480, 1512]
[481, 532]
[482, 726]
[483, 768]
[484, 931]
[485, 588]
[486, 1092]
[487, 488]
[488, 930]
[489, 656]
[490, 1026]
[491, 492]
[492, 1176]
[493, 540]
[494, 840]
[495, 936]
[496, 992]
[497, 576]
[498, 1008]
[499, 500]
[500, 1092]
[501, 672]
[502, 756]
[503, 504]
[504, 1560]
[505, 612]
[506, 864]
[507, 732]
[508, 896]
[509, 510]
[510, 1296]
[511, 592]
[512, 1023]
[513, 800]
[514, 774]
[515, 624]
[516, 1232]
[517, 576]
[518, 912]
[519, 696]
[520, 1260]
[521, 522]
[522, 1170]
[523, 524]
[524, 924]
[525, 992]
[526, 792]
[527, 576]
[528, 1488]
[529, 553]
[530, 972]
[531, 780]
[532, 1120]
[533, 588]
[534, 1080]
[535, 648]
[536, 1020]
[537, 720]
[538, 810]
[539, 684]
[540, 1680]
[541, 542]
[542, 816]
[543, 728]
[544, 1134]
[545, 660]
[546, 1344]
[547, 548]
[548, 966]
[549, 806]
[550, 1116]
[551, 600]
[552, 1440]
[553, 640]
[554, 834]
[555, 912]
[556, 980]
[557, 558]
[558, 1248]
[559, 616]
[560, 1488]
[561, 864]
[562, 846]
[563, 564]
[564, 1344]
[565, 684]
[566, 852]
[567, 968]
[568, 1080]
[569, 570]
[570, 1440]
[571, 572]
[572, 1176]
[573, 768]
[574, 1008]
[575, 744]
[576, 1651]
[577, 578]
[578, 921]
[579, 776]
[580, 1260]
[581, 672]
[582, 1176]
[583, 648]
[584, 1110]
[585, 1092]
[586, 882]
[587, 588]
[588, 1596]
[589, 640]
[590, 1080]
[591, 792]
[592, 1178]
[593, 594]
[594, 1440]
[595, 864]
[596, 1050]
[597, 800]
[598, 1008]
[599, 600]
[600, 1860]
[601, 602]
[602, 1056]
[603, 884]
[604, 1064]
[605, 798]
[606, 1224]
[607, 608]
[608, 1260]
[609, 960]
[610, 1116]
[611, 672]
[612, 1638]
[613, 614]
[614, 924]
[615, 1008]
[616, 1440]
[617, 618]
[618, 1248]
[619, 620]
[620, 1344]
[621, 960]
[622, 936]
[623, 720]
[624, 1736]
[625, 781]
[626, 942]
[627, 960]
[628, 1106]
[629, 684]
[630, 1872]
[631, 632]
[632, 1200]
[633, 848]
[634, 954]
[635, 768]
[636, 1512]
[637, 798]
[638, 1080]
[639, 936]
[640, 1530]
[641, 642]
[642, 1296]
[643, 644]
[644, 1344]
[645, 1056]
[646, 1080]
[647, 648]
[648, 1815]
[649, 720]
[650, 1302]
[651, 1024]
[652, 1148]
[653, 654]
[654, 1320]
[655, 792]
[656, 1302]
[657, 962]
[658, 1152]
[659, 660]
[660, 2016]
[661, 662]
[662, 996]
[663, 1008]
[664, 1260]
[665, 960]
[666, 1482]
[667, 720]
[668, 1176]
[669, 896]
[670, 1224]
[671, 744]
[672, 2016]
[673, 674]
[674, 1014]
[675, 1240]
[676, 1281]
[677, 678]
[678, 1368]
[679, 784]
[680, 1620]
[681, 912]
[682, 1152]
[683, 684]
[684, 1820]
[685, 828]
[686, 1200]
[687, 920]
[688, 1364]
[689, 756]
[690, 1728]
[691, 692]
[692, 1218]
[693, 1248]
[694, 1044]
[695, 840]
[696, 1800]
[697, 756]
[698, 1050]
[699, 936]
[700, 1736]
[701, 702]
[702, 1680]
[703, 760]
[704, 1524]
[705, 1152]
[706, 1062]
[707, 816]
[708, 1680]
[709, 710]
[710, 1296]
[711, 1040]
[712, 1350]
[713, 768]
[714, 1728]
[715, 1008]
[716, 1260]
[717, 960]
[718, 1080]
[719, 720]
[720, 2418]
[721, 832]
[722, 1143]
[723, 968]
[724, 1274]
[725, 930]
[726, 1596]
[727, 728]
[728, 1680]
[729, 1093]
[730, 1332]
[731, 792]
[732, 1736]
[733, 734]
[734, 1104]
[735, 1368]
[736, 1512]
[737, 816]
[738, 1638]
[739, 740]
[740, 1596]
[741, 1120]
[742, 1296]
[743, 744]
[744, 1920]
[745, 900]
[746, 1122]
[747, 1092]
[748, 1512]
[749, 864]
[750, 1872]
[751, 752]
[752, 1488]
[753, 1008]
[754, 1260]
[755, 912]
[756, 2240]
[757, 758]
[758, 1140]
[759, 1152]
[760, 1800]
[761, 762]
[762, 1536]
[763, 880]
[764, 1344]
[765, 1404]
[766, 1152]
[767, 840]
[768, 2044]
[769, 770]
[770, 1728]
[771, 1032]
[772, 1358]
[773, 774]
[774, 1716]
[775, 992]
[776, 1470]
[777, 1216]
[778, 1170]
[779, 840]
[780, 2352]
[781, 864]
[782, 1296]
[783, 1200]
[784, 1767]
[785, 948]
[786, 1584]
[787, 788]
[788, 1386]
[789, 1056]
[790, 1440]
[791, 912]
[792, 2340]
[793, 868]
[794, 1194]
[795, 1296]
[796, 1400]
[797, 798]
[798, 1920]
[799, 864]
[800, 1953]
[801, 1170]
[802, 1206]
[803, 888]
[804, 1904]
[805, 1152]
[806, 1344]
[807, 1080]
[808, 1530]
[809, 810]
[810, 2178]
[811, 812]
[812, 1680]
[813, 1088]
[814, 1368]
[815, 984]
[816, 2232]
[817, 880]
[818, 1230]
[819, 1456]
[820, 1764]
[821, 822]
[822, 1656]
[823, 824]
[824, 1560]
[825, 1488]
[826, 1440]
[827, 828]
[828, 2184]
[829, 830]
[830, 1512]
[831, 1112]
[832, 1778]
[833, 1026]
[834, 1680]
[835, 1008]
[836, 1680]
[837, 1280]
[838, 1260]
[839, 840]
[840, 2880]
[841, 871]
[842, 1266]
[843, 1128]
[844, 1484]
[845, 1098]
[846, 1872]
[847, 1064]
[848, 1674]
[849, 1136]
[850, 1674]
[851, 912]
[852, 2016]
[853, 854]
[854, 1488]
[855, 1560]
[856, 1620]
[857, 858]
[858, 2016]
[859, 860]
[860, 1848]
[861, 1344]
[862, 1296]
[863, 864]
[864, 2520]
[865, 1044]
[866, 1302]
[867, 1228]
[868, 1792]
[869, 960]
[870, 2160]
[871, 952]
[872, 1650]
[873, 1274]
[874, 1440]
[875, 1248]
[876, 2072]
[877, 878]
[878, 1320]
[879, 1176]
[880, 2232]
[881, 882]
[882, 2223]
[883, 884]
[884, 1764]
[885, 1440]
[886, 1332]
[887, 888]
[888, 2280]
[889, 1024]
[890, 1620]
[891, 1452]
[892, 1568]
[893, 960]
[894, 1800]
[895, 1080]
[896, 2040]
[897, 1344]
[898, 1350]
[899, 960]
[900, 2821]
[901, 972]
[902, 1512]
[903, 1408]
[904, 1710]
[905, 1092]
[906, 1824]
[907, 908]
[908, 1596]
[909, 1326]
[910, 2016]
[911, 912]
[912, 2480]
[913, 1008]
[914, 1374]
[915, 1488]
[916, 1610]
[917, 1056]
[918, 2160]
[919, 920]
[920, 2160]
[921, 1232]
[922, 1386]
[923, 1008]
[924, 2688]
[925, 1178]
[926, 1392]
[927, 1352]
[928, 1890]
[929, 930]
[930, 2304]
[931, 1140]
[932, 1638]
[933, 1248]
[934, 1404]
[935, 1296]
[936, 2730]
[937, 938]
[938, 1632]
[939, 1256]
[940, 2016]
[941, 942]
[942, 1896]
[943, 1008]
[944, 1860]
[945, 1920]
[946, 1584]
[947, 948]
[948, 2240]
[949, 1036]
[950, 1860]
[951, 1272]
[952, 2160]
[953, 954]
[954, 2106]
[955, 1152]
[956, 1680]
[957, 1440]
[958, 1440]
[959, 1104]
[960, 3048]
[961, 993]
[962, 1596]
[963, 1404]
[964, 1694]
[965, 1164]
[966, 2304]
[967, 968]
[968, 1995]
[969, 1440]
[970, 1764]
[971, 972]
[972, 2548]
[973, 1120]
[974, 1464]
[975, 1736]
[976, 1922]
[977, 978]
[978, 1968]
[979, 1080]
[980, 2394]
[981, 1430]
[982, 1476]
[983, 984]
[984, 2520]
[985, 1188]
[986, 1620]
[987, 1536]
[988, 1960]
[989, 1056]
[990, 2808]
[991, 992]
[992, 2016]
[993, 1328]
[994, 1728]
[995, 1200]
[996, 2352]
[997, 998]
[998, 1500]
[999, 1520]
[1000, 2340]
Теперь посмотрим, все ли числа являются суммой делителей какого-либо числа и есть ли такие числа сумма делителей которых равна (в первых двух сотнях).
Ниже приведена таблица: [[4, 7]](на втором месте сумма делителей, а на первом число с данной суммой делителей) … [[1, 1]], [2] (т.е. нет такого числа с суммой делителей равной двум):
[1,1]
[2]
[2,3]
[3,4]
[5]
[5,6]
[4,7]
[7,8]
[9]
[10]
[11]
[6,12]
[11, 12]
[9,13]
[13,14]
[8,15]
[16]
[17]
[10,18]
[17,18]
[19]
[19.20]
[21]
[22]
[23]
[14,24]
[15,24]
[23,24]
[25]
[26]
[27]
[12, 28].
[29]
[29,30]
[16,31]
[25.31]
[21,32]
[31,32]
[33]
[34]
[35]
[22,36]
[37]
[37,38]
[18,39]
[27, 40]
[41]
[20,42]
[26,42]
[41,42].
[43]
[43,44].
[45]
[46]
[47]
[33,48].
[35,4 8]
[47,48]
[49]
[50]
[51]
[52]
[53]
[34,54]
[53, 54]
[55]
[28,56]
[39.56]
[49,57]
[58]
[59]
[24,60]
[38.60]
[59,60]
[61]
[61,62]
[32,63]
[64]
[65]
[66]
[67]
[67, 68]
[69]
[70]
[71]
[30,72]
[46,72]
[51,72]
[55,72]
[71,72]
[73]
[73,74]
[75]
[76]
[77]
[45,78]
[79]
[57,80]
[79,80]
[81]
[82]
[83]
[44,84]
[65,84]
[83,84]
[85]
[86]
[87]
[88]
[89]
[40, 90]
[58,90]
[89,90]
[36,91]
[92]
[50,93].
[94]
[95]
[42, 96]
[62,96]
[69,96]
[77,96]
[97]
[52,98]
[97,98]
[99]
[100]
[101]
[102]
[103]
[63,104]
[105]
[106]
[107]
[85,108]
[109]
[110]
[111]
[91, 112]
[113]
[74,114],
[115]
[116]
[117]
[118]
[119]
[54,120]
[56,120]
[87,120]
[95,120]
[81,121]
[122]
[123]
[48,124]
[75, 124]
[125]
[68,126]
[82.126]
[64,127]
[9 3,128]
[129]
[130]
[131]
[86,132]
[133]
[134]
[135]
[136]
[137]
[138]
[139]
[76,140]
[141]
[142]
[143]
[66,144]
[70,144]
[94,144]
[145]
[146]
[147]
[178]
[149]
[150]
[151]
[152]
[153]
[154]
[155]
[99,156]
[157]
[158]
[159]
[160]
[161]
[162]
[163]
[164]
[165]
[166]
[167]
[60,168]
[78,168]
[92,168]
[169]
[170]
[98,171]
[172]
[173]
[174]
[175]
[176]
[177]
[178]
[179]
[88,180]
[181]
[182]
[183]
[184]
[185]
[80,186]
[187]
[188]
[189]
[190]
[191]
[192]
[193]
[194]
[72,195]
[196]
[197]
[198]
[199]
[200]
Как мы заметили, есть такие числа, которые не являются суммой делителей ни одного числа и так же есть такие числа, которые являются суммой делителей ни одного, а нескольких чисел. Теперь посмотрим только те числа, которые являются суммой делителей ни одного, а нескольких чисел:
[6,12], [11,12]
[10,18], [17,18]
[14,24], [15,24], [23,24]
[16,31]. [25,31]
[21,32], [31,32]
[20, 42], [26,42], [41,42]
[33,48], [35,48], [47,48]
[34,5 4], [53,54]
[28,56], [39,56]
[24,60], [38,60], [59, 60]
[30,72], [46,72], [51,72], [55,72], [71,72]
[57,80], [79,80]
[44,84], [65,84], [83,84]
[40,90], [58, 9 0], [89,90]
[42,96], [62,96], [69,96], [77,96]
[52,98], [97,98]
[54,120], [56, 120], [87,120], [95,120]
[48,124], [75,124]
[68,126], [82,126]
[66,144], [70, 144], [94,144]
[60,168], [78,168], [92,168]
Отсюда можно сделать вывод, что нахождение числа по его сумме делителей не всегда возможно и не всегда однозначно.
Теперь построим график. По оси Х расположим числа, а по оси Y их сумму делителей (числа от 1 до 1000):Посмотрим, что же у нас получилось: на графике отчётливо просматриваются несколько прямых линий, например, нижняя это – простые числа. Верхняя граница – это наиболее сложные числа (имеющие наибольшее количество делителей) - это не прямая, но и не парабола. Скорее всего, – это показательная функция (у = ах
).
В мемуарах Эйлера я нашел много интересных мне рассуждений(σ(n) – сумма делителей числа n): Определив значение σ(n) мы ясно видим, что если p – простое, то σ(p)= p + 1. σ(1)=1, а если число n – составное, то σ(n)>1 + n.
Если a, b, c, d – различные простые числа, то мы видим:
σ(ab)=1+a+b+ab=(1+a)(1+b)= σ(a)σ(b)
σ(abcd)= σ(a)σ(b)σ(c)σ(d)
σ(a^2)=1+a+a2
=
σ(a^3)=1+a+a2
+a3
=
И вообще
σ(nn
)=
Пользуясь этим:
σ(aq
bw
ce
dr
)= σ(aq
)σ(bw
)σ(ce
)σ(dr
)
Например σ(360), 360 = 23
*32
*5 => σ(23
) σ(32
) σ(5)=15*13*6=1170.
Чтобы показать последовательность сумм делителей приведём таблицу:
n
|
0
|
1
|
2
|
3
|
4
|
5
|
6
|
7
|
8
|
9
|
0
|
- |
1 |
3 |
4 |
7 |
6 |
12 |
8 |
15 |
13 |
10
|
18 |
12 |
28 |
14 |
24 |
24 |
31 |
18 |
39 |
20 |
20
|
42 |
32 |
36 |
24 |
60 |
31 |
42 |
40 |
56 |
30 |
30
|
72 |
32 |
63 |
48 |
54 |
48 |
91 |
38 |
60 |
56 |
40
|
90 |
42 |
96 |
44 |
84 |
78 |
72 |
48 |
124 |
57 |
50
|
93 |
72 |
98 |
54 |
120 |
72 |
120 |
80 |
90 |
60 |
60
|
168 |
62 |
96 |
104 |
127 |
84 |
144 |
68 |
126 |
96 |
70
|
144 |
72 |
195 |
74 |
114 |
424 |
140 |
96 |
168 |
80 |
80
|
186 |
121 |
126 |
84 |
224 |
108 |
132 |
120 |
180 |
90 |
90
|
234 |
112 |
168 |
128 |
144 |
120 |
252 |
98 |
171 |
156 |
Если σ(n) обозначает член любой этой последовательности, а σ(n - 1), σ(n - 2), σ(n - 3)… предшествующие члены, то σ(n) всегда можно получить по нескольким предыдущим членам:
σ(n) = σ(n - 1) + σ(n - 2) - σ(n - 5) - σ(n - 7) + σ(n - 12) + σ(n - 15) - σ(n - 22) - σ(n – 26) + … (**)
Знаки «+» «-» в правой части формулы попарно чередуются. Закон чисел 1, 2, 5, 7, 12, 15…,которые мы должны вычитать из рассматриваемого числа n, станет ясен если мы возьмем их разности:
Числа:1, 2, 5, 7, 12, 15, 22, 26, 35, 40, 51, 57, 70, 77, 92, 100…
Разности: 1
, 3, 2
, 5, 3
, 7, 4
, 9, 5
, 11, 6
, 13, 7
, 15, 8
…
В самом деле, мы имеем здесь поочередно все целые числа 1, 2, 3, 4, 5, 6, 7… и нечетные 3, 5, 7,9 11…
Хотя эта последовательность бесконечна, мы должны в каждом случае брать только те члены, для которых числа стоящие под знаком σ, еще положительны, и опускать σ для отрицательных чисел. Если в нашей формуле встретиться σ(0), то, поскольку его значение само по себе является неопределённым, мы должны подставить вместо σ(0) рассматриваемое число n. Примеры:
σ(1) = σ(0) =1 = 1
σ(2) = σ(1) + σ(0) = 1 + 2 = 3
…
σ(20) = σ(19)+σ(18)-σ(15)-σ(13)+9σ(8)+σ(5)=20+39-24-14+15+6= 42
Доказательство теоремы (**) я приводить не буду.
Вообще, найти сумму всех делителей числа можно с помощью канонического разложения натурального числа (это уже было сказано выше). Сумму делителей числа n обозначают σ(n). Легко найти σ(n) для небольших натуральных чисел, например σ(12) = 1+2+3+4+6+12=28(это было приведено выше). Но при достаточно больших числах отыскивание всех делителей, а тем более их суммы становится затруднительным. Совсем другое дело, если уже известно, что каноническое
разложение числа n таково:.
Его делителями являются все числа , для которых 0 ≤βs
≤ αs
, s = 1, …, k. Ясно, что σ(n) представляет собой сумму всех таких чисел при различных значениях показателей
β1
, β2
, … βk
. Этот результат мы получим раскрыв скобки в произведении
По формуле конечного числа членов геометрической прогрессии приходим к равенству
(*)
По этой формуле σ(360) = .
Формулу для вычисления значения функции σ(n) вывел замечательный английский математик Джон Валлис(1616 - 1703) – один из основателей и первых членов Лондонского Королевства общества (Академии наук). Он был первым из английских математиков, начавших заниматься математическим анализом. Ему принадлежат многие обозначения и термины, применяемые сейчас в математике, в частности знак ∞ для обозначения бесконечности. Валлис вывел удивительную формулу, представляющую число π в виде бесконечного произведения:
Д. Валлис много занимался комбинаторикой и её приложениями к теории шифров, не без основания считая себя родоначальником новой науки – криптологии (от греч. «криптос» - тайный, «логос» - наука, учение). Он был одним из лучших шифровальщиков своего времени и по поручению министра полиции Терло занимался в республиканском правительстве Кромвеля расшифровкой посланий монархических заговорщиков.
С функцией σ(n) связан ряд любопытных задач.Например:
1.) Найти пару целых чисел, удовлетворяющих условию: σ(m1
)=m2
, σ(m2
)=m1
.
Некоторые из них не удаётся решить даже с использованием формулы (*). Так, например, не иначе как подбором можно найти числа, для которых σ(n) есть квадрат некоторого натурального числа. Такими числами являются 22, 66, 70, 81, 343, 1501, 4479865. Вот ещё две задачи, приведённые в 1657 г. Пьером Ферма:
1.) найти такое m, для которого σ(m3
) – квадрат натурального числа (Ферма нашёл не одно решение этой задачи);
2.) найти такое m, для которого σ(m2
) – куб натурального числа.
Например, одним из решений первой задачи является m = 7, а для второй m = 43098.
С помощью программы Derive, я попробовал найти ещё решения и у меня этого не получилось. (я рассматривал σ(m3
) = n2
, где m принимает значения от 1 до 1000, а n от 1 до 5000 в 1.) и тоже самое в 2.) )
Формулы:
1. DELITELI(m) := SELECT(MOD(m, n) = 0, n, 1, m)
DIMENSION(DELITELI(m))
2. SUMMADELITELEY(m) := Σ ELEMENT(DELITELI(m), i)
i=1
|