Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Метод хорд

Название: Метод хорд
Раздел: Рефераты по математике
Тип: реферат Добавлен 04:26:36 04 сентября 2005 Похожие работы
Просмотров: 1071 Комментариев: 22 Оценило: 5 человек Средний балл: 4.6 Оценка: неизвестно     Скачать

Министерство образования и науки РФ

Рязанская Государственная Радиотехническая Академия

Кафедра САПР ВС

Пояснительная записка к курсовой работе

по дисциплине ,,Информатика”

Тема: ,,Метод хорд”

Выполнил:

студент 351 группы

Литвинов Е.П.

Проверил:

Скворцов С.В.

Рязань 2004г.

Контрольный пример к курсовой работе студента 351 группы Литвинова Евгения.

Задание: Разработать программу, которая выполняет уточнение корня нелинейного уравнения отделенного на заданном интервале [a,b], заданным методом.

Решить нелинейное уравнение с использованием разработанной программы и средств системы MathCAD. Сравнить полученные результаты.

Определить количество необходимых итераций для следующих значений погрешностей результата: Eps=;;;;.

Используемый метод: метод хорд.

Контрольный пример: ;

Интервал [a,b]: [0,1].

Вариант: 2.2

Задание принял:

Число выдачи задания:

Число выполнения задания:

Проверил: Скворцов С.В.

Метод хорд.

Пусть дано уравнение , где - непрерывная функция, имеющая в интервале (a,b) производные первого и второго порядков. Корень считается отделенным и находится на отрезке [a,b].

Идея метода хорд состоит в том, что на достаточно малом промежутке [a,b] дугу кривой можно заменить хордой и в качестве приближенного значения корня принять точку пересечения с осью абсцисс. Рассмотрим случай (рис.1), когда первая и вторая производные имеют одинаковые знаки, т.е. .

Уравнение хорды - это уравнение прямой, проходящей через две точки (a, f(a)) и (b, f(b)).

Общий вид уравнения прямой, проходящей через две точки:

Подставляя в эту формулу значения, получим уравнение хорды AB:

.

Пусть x1 - точка пересечения хорды с осью x, так как y = 0, то

x1 может считаться приближенным значением корня.

Аналогично для хорды, проходящей через точки и , вычисляется следующее приближение корня:

В общем случае формулу метода хорд имеет вид:

(1)

Если первая и вторая производные имеют разные знаки, т.е. , то все приближения к корню выполняются со стороны правой границы отрезка (рис.2) и вычисляются по формуле:

(2)

Выбор формулы в каждом конкретном случае зависит от вида функции и осуществляется по правилу: неподвижной является такая граница отрезка изоляции корня, для которой знак функции совпадает со знаком второй производной. Формула (1) используется в том случае, когда . Если справедливо неравенство , то целесообразно применять формулу (2).

Итерационный процесс метода хорд продолжается до тех пор, пока не будет получен приближенный корень с заданной степенью точности. При оценке погрешности приближения можно пользоваться соотношением

Если обозначить через m наименьшее значение |f'(x)| на промежутке [a, b], которое можно определить заранее, то получим формулу для оценки точности вычисления корня:

или

где - заданная погрешность вычислений.

Список идентификаторов.

a – начало отрезка,

b – конец отрезка,

eps – погрешность вычислений,

x – искомое значение корня,

min – модуль значения производной функции в начале отрезка,

d – модуль значения производной функции в конце отрезка,

x0 – точка, в которой мы ищем производную.

****************************************************************

Program kursovaia;

uses crt;

Var

a,b,eps,x,min: real;

{Вычисление данной функции}

Function fx(x:real): real;

begin

fx:=exp(x)-10*x;

end;

----------------------------------------------------------------

{Функция вычисления производной и определение точности вычислений}

{Для определения точности вычисления берем значение 2-й производной в точке x*=}

Function proizv(x0,eps: real): real;

var

dx,dy,dy2: real;

begin

dx:=1;

Repeat

dx:=dx/2;

dy:=fx(x0+dx/2)-fx(x0-dx/2);

dy2:=fx(5*x0/4+dx)-2*fx(5*x0/4);

dy2:=dy2+fx(5*x0/4-dx);

Until abs(dy2/(2*dx))<eps;

proizv:=dy/dx;

end;

----------------------------------------------------------------

{Уточнение количества знаков после запятой}

Function utoch(eps:real): integer;

var

k: integer;

begin

k:=-1;

Repeat

eps:=eps*10;

k:=k+1;

Until eps>1;

utoch:=k;

end;

----------------------------------------------------------------

{Процедура определения наименьшего значения производной на

заданном промежутке}

Procedure minimum(a,b,eps: real; var min: real);

var

d: real;

begin

a:=a-eps;

b:=b+eps;

Repeat

a:=a+eps;

b:=b-eps;

min:=abs(proizv(a,eps));

d:=abs(proizv(b,eps));

If min>d Then min:=d

Until min <>0

end;

----------------------------------------------------------------

{Процедура уточнения корня методом хорд}

Procedure chord(a,b,eps,min: real; var x:real);

Var

x1: real;

begin

x1:=a;

Repeat

x:=x1-((b-x1)*fx(x1))/(fx(b)-fx(x1));

x1:=x

Until abs(fx(x))/min<eps

end;

----------------------------------------------------------------

{Основная программа}

Begin

clrscr;

Writeln ('Введите начало отрезка a, конец отрезка b');

Readln (a,b);

Writeln ('Введите погрешность измерений eps');

Readln (eps);

minimum(a,b,eps,min);

chord(a,b,eps,min,x);

Writeln ('Корень уравнения x= ',x:3:utoch(eps));

End.

****************************************************************

После работы программы для различных значений погрешностей, получим результаты корня x :

0,11

0,111

0,1119

0,11183

0,111833

Результат вычислений в программе MathCAD дал следующее значение корня x :

x=0.112

График функции выглядит так:

Поведение функции вблизи точки пересеченья с осью ОХ выглядит так:

Алгоритм.

Пользуясь рекуррентной формулой (2) и формулой для оценки точности вычисления, составим процедуру уточнения корня методом хорд:

Procedure chord(a, b, eps, min : real; var x : real);

Здесь x:=x1-((b-x1)*fx(x1))/(fx(b)-fx(x1)) – рекуррентная формула,

abs(fx(x))/min < eps – формула для оценки точности вычислений.

При вычислении производной функции

Function proizv(x0, eps : real) : real;

будем иметь в виду, что один из способов найти производную - это взять достаточно малые значения справа и слева на равном расстоянии от - точке, в которой мы хотим найти производную.

Таким образом, вычисляется производная в середине промежутка.

По значениям f' можно таким же способом найти производную от f', т.е. f''. Можно выразить f'' непосредственно через f(x):

Для производной третьего порядка можно использовать следующую формулу:

Здесь dx:=1 - первоначальная величина промежутка,

dx:=dx/2 – для уточнений делим промежуток на 2,

dy:=fx(x0+dx/2 -fx(x0-dx/2) – вычисление первой производной в точке x0 ,

dy2:=fx(5*x0/4+dx)-2*fx(5*x0/4)+fx(5*x0/4-dx) – вычисление второй производной, для определения точности вычисления, используется вторая производная в точке

abs(dy2/(2*dx))<eps - формула для оценки погрешности

дифференцирования,

proizv:=dy/dx – значение первой производной.

Для оценки точности вычисления корня необходимо вычислять наименьшее значение производной f'(x) на промежутке [a, b], поэтому надо найти производную в точке x0.

Так как мы вычислили значение производной, то составим процедуру определения модуля ее наименьшего значения на промежутке [a, b]:

Procedure minimum(a,b,eps:real;var min:real);

Для этого достаточно сравнить модуль значения производной на концах промежутка и выбрать среди этих двух значений меньшее. Это можно сделать , так как по условию, функция на промежутке строго монотонна вместе со своими производными первого и второго порядков. Следует брать значение очень близкое к a, но справа от нее, аналогично для точки b - брать близкое значение слева от b, так как если в точке a или b производная будет равна нулю, тогда деление на нуль станет невозможным и в программе будет получена ошибка.

Здесь min:=abs(proizv(a,eps))- модуль значения производной функции в начале отрезка,

d:=abs(proizv(b,eps))- модуль значения производной функции в конце отрезка,

If min>d Then – сравнение значений модуля производной.

Функция для указания точности вычисления:

Function utoch(eps:real):integer;

Применяется в выводе корня x для уточнения его порядка относительно погрешности.

Здесь k:=k+1 – оператор, подсчитывающий степень погрешности и порядка корня x .

Заданную функцию запишем так:

Function fx(x:real):real;

Здесь fx:=exp(x)-10*x – наша заданная функция.

Блок-схема алгоритма.

Список используемой литературы:

1) Математическое обеспечение САПР: Методические указания к практическим занятиям. Рязань, РРТИ, 1990 (№1706).

2) Математическое обеспечение САПР: Методические указания к лабораторным работам. Рязань, РРТИ, 1991 (№1890).

3) Бахвалов Н.С., Шадков И.П., Кобельников Г.М., Численные методы. М.: Наука, 1987.

4) Волков Е.А., Численные методы. М.: Наука, 1988.

5) Элементы вычислительной математики, под ред. С.Б.Норкина. М.: Высшая школа, 1966.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита01:23:14 02 ноября 2021
.
.01:23:11 02 ноября 2021
.
.01:23:09 02 ноября 2021
.
.01:23:07 02 ноября 2021
.
.01:23:05 02 ноября 2021

Смотреть все комментарии (22)
Работы, похожие на Реферат: Метод хорд

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(294399)
Комментарии (4230)
Copyright © 2005 - 2024 BestReferat.ru / реклама на сайте