Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Кривые и поверхности второго порядка

Название: Кривые и поверхности второго порядка
Раздел: Рефераты по математике
Тип: реферат Добавлен 11:20:16 24 сентября 2005 Похожие работы
Просмотров: 3338 Комментариев: 23 Оценило: 14 человек Средний балл: 3.6 Оценка: 4     Скачать

ЭЛЛИПС.

Эллипсом называется геометрическое место точек, для которых сумма расстояний от двух фик­сированных точек плоскости, называе­мых фокусами, есть постоянная величина; требуется, чтобы эта по­стоянная была больше расстояния между фокусами. Фокусы эллипса при­нято обозначать через F1 и F2.

Пусть М —произвольная точка эллипса с фокусами F1 и F2. Отрезки F1 М и F2 М (так же как и длины этих отрезков) назы­ваются фокальными радиусами точки М. По­стоянную сумму фокаль­ных ра­диусов точки эллипса принято обозначать через 2а. Таким образом, для любой точки М эллипса имеем:

F1 М + F2 М = 2а.

Расстояние F1 и F2 между фокусами обозначают через 2с. Пусть дан какой-нибудь эллипс с фоку­сами F1 ,F2.

Возьмем на плоскости произвольную точку М и обозначим ее координаты через х и у. Обозначим, далее, через r1 иr 2 расстояния от точки М до фокусов ( r1 = F1 М, r 2 = F2 М ). Точка М будет нахо­диться на данном эллипсе в том и только в том случае, когда

r1 + r 2 = 2а.

Чтобы получить искомое уравнение, нужно в равенстве заменить переменные r1 иr 2 их выраже­ниями через координаты х, у.

Заметим, что так как F1 F2 = и так как фокусы F1 и F2 распо­ложены на оси Ох симметрично от­носительно начала координат, то они имеют соответственно координаты (—с; 0) и (+с; 0); при­няв это во внимание находим:

Заменяя r1 иr 2 , получаем:

Это и есть уравнение рассматриваемого эллипса, так как ему удовлетворяют координаты точки

М (х; у), когда точка М лежит на этом эллипсе. Возведёмобе части равенства в квадрат, полу­чим:

или

Возводя в квадрат обе части последнего равенства, найдем:

а2 х2 — 2а2 сх + а2 с2 + а2 у2 = а4 — 2а2 сх + с2 х2 ,

откуда

2 —с22 + а2 у2 = а22 —с2 ).

Здесь мы введем в рассмотрение новую величину

;

а > с, следовательно, а2 —с2 > 0 и величина b —вещественна.

b2 = a 2 c2 ,

тогда

b2 x2 + a2 y2 = a2 b2 ,

или

.

Это уравнение называется каноническим уравнением эллипса.

Уравнение

,

определяющее эллипс в некоторой системе декартовых прямоугольных координат, есть уравнение второй степени; таким образом, эллипс есть линия второго порядка.

Эксцентриситетом эллипса называется отношение рас­стояния между фокусами этого эллипса к длине его большой оси; обозначив эксцентриситет буквой ε, получаем:

.

Так как с <a , то ε < 1, т. е. эксцентриситет каждого эллипса меньше единицы.

Заметим, что c2 = a 2 b2 ; поэтому

;

отсюда

и

Следовательно, эксцентриситет определяется отношением осей эллипса, а отношение осей, в свою очередь, определяется эксцен­триситетом. Таким образом, эксцентриситет характеризует форму эллипса. Чем ближе эксцентриситет к единице, тем меньше 1— ε2 , тем меньше, следова­тельно, отношение ; значит, чем больше эксцентриситет, тем более эллипс вытянут. В случае окружности b=a и ε=0.

Рассмотрим какой-нибудь эллипс и введем декартову прямо­угольную систему координат так, чтобы этот эллипс определялся каноническим уравнением

Предположим, что рассматриваемый эллипс не является окружностью, т. е. что а≠ b и, следова­тельно, ε=0. Предположим еще, что этот эллипс вытянут в направлении оси Ох, т. е. что а >b .

Две прямые, перпендикулярные к большой оси эллипса и рас­положенные симметрично относи­тельно центра на расстоянии от него, называются директрисами эллипса.

Уравнения директрис в выбранной системе координат имеют вид


и .

Первую из них мы условимся называть левой, вторую—правой. Так как для эллипса ε < 1, то . Отсюда следует, что правая директриса расположена правее правой вершины эл­липса; аналогично, левая ди­ректриса расположена левее его левой вершины. Частным случаем эллипса является окружность. Её уравнение имеет вид:

х2 + у2 = R2 .

ГИПЕРБОЛА.

Гиперболой называется геометрическое место точек, для которых разность расстояний от двух фиксированных точек плоскости, на­зываемых фокусами, есть постоянная величина; указанная разность берется по абсолютному значению; кроме того, требуется, чтобы она была меньше расстояния между фокусами и отлична от нуля. Фокусы гиперболы принято обозначать через F1 иF2 , а расстояние между ними—через 2с.


Пусть М —произвольная точка гиперболы с фокусами F1 и F2 . Отрезки F1 М и F2 М (так же, как и дли­ны этих отрезков) называ­ются фокальными радиусами точки М и обозначаются че­рез r1 и r 2 ( r1 = F1 М, r 2 = F2 М ). По определению гиперболы разность фокаль­ных радиусов ее точки М есть по­стоянная величина; эту постоян­ную принято обозначать через 2а.

Пусть дана какая-нибудь гипербола с фокусами F1 и F2 . Возьмем на плоскости произвольную точку М и обозначим ее координаты через х и у, а фокальные радиусы F1 М и F2 М через r1 и r 2 . Точка М будет находиться на (данной) гиперболе в том и только в том случае, когда

r1 r 2 = ±2а.

Так как F1 F2 = и так как фокусы F1 и F2 располо­жены на оси Ох симметрично относительно на­чала координат, то они имеют соответственно координаты (—с; 0) и (+с; 0); приняв это во внима­ние находим:

, .

Заменяя r1 и r 2 , получаем:

.

Это и есть уравнение рассматриваемой гиперболы, так как ему удовлетворяют координаты точки М (х; у), когда точка М лежит на гиперболе.

Возведём обе части равенства в квадрат; получим:


,

или

.

Возводя в квадрат обе части этого равенства, найдем:

c2 x2 – 2a2 cx + a4 = a2 x2 – 2a2 cx + a2 c2 + a2 y2 ,

откуда

(c2 – a2 )x2 – a2 y2 = a2 (c2 – a2 ) .

Здесь мы введем в рассмотрение новую величину

;

с >a , следовательно, с2 —а2 >0 и величинаb —вещественна.

b2 = с2 —а2 ,

тогда

b2 x2 a2 y2 = a2 b2 ,

или

.

Уравнение

,

определяющее гиперболу в некоторой системе декартовых прямо­угольных коорди­нат, есть урав­нение второй степени; таким образом, гипербола есть линия второго порядка.

Эксцентриситетом гиперболы называется отношение рас­стояния между фокусами этой гиперболы к расстоянию между ее вершинами; обозначив эксцентриситет бук­вой ε, получим:

.

Так как для гиперболы с >a , то ε >1 ; т. е. эксцентриситет каждой гиперболы больше единицы. Заме­тив, что c2 = a 2 + b2 , находим:


;

отсюда

и .

Следовательно, эксцентриситет определяется отношением , а от­ношение в свою очередь оп­ределяется эксцентриситетом. Таким образом, эксцентриситет гиперболы ха­рактеризует форму ее основного прямоугольника, а значит, и форму самой гиперболы.

Чем меньше эксцентриситет, т. е. чем ближе он к единице, тем меньшеε2 —1, тем меньше, следо­вательно, отношение ; значит, чем меньше эксцентриситет гиперболы, тем бо­лее вытянут ее ос­новной прямоугольник (в направлении оси, соединяющей вершины). В случае равносторонней ги­перболы a=b иε=√2 .

Рассмотрим какую-ни­будь гиперболу и введем декартову прямоугольную систему координат так, чтобы эта гипербола определялась каноническим уравнением

.

Две прямые, перпендикулярные к той оси гиперболы, кото­рая ее пересекает, и расположенные симметрично относительно центра на расстоянии от него, называются директрисами гипер­болы.

Уравнения директрис в вы­бранной системе координат имеют вид

и .

Первую из них мы усло­вимся называть левой, вто­рую —правой.

Так как для гиперболы ε > 1, то .

Отсюда следует, что правая директриса расположена между центром и правой вершиной гипер­болы; ана­логично, левая директриса расположена между центром и левой вершиной.

ПАРАБОЛА.

Параболой называется геометрическое место точек, для каждой из которых расстояние до некоторой фиксированной точки плоскости, называемой фо­ку­сом, равно расстоянию до некоторой фиксированной прямой, называемой ди­ректрисой (пред­полагается, что эта прямая не проходит через фокус).

Фокус параболы принято обозначать буквой F , расстояние от фокуса до ди­ректрисы—буквой p. Величину р называют параметром параболы.

Пусть дана какая-нибудь парабола. Возьмем на плоскости произвольную точку М и обозначим ее координаты через х и у. Обозначим далее через r рас­стояние от точки М до фокуса ( r = FM ), через d расстояние от точки М до дирек­трисы. Точка М будет находиться на (данной) параболе в том и только в том случае, когда

r=d.

Чтобы получить искомое уравнение, нужно заменить переменныеr и d их выраже­ниями через те­кущие координаты х, у.

Заметим, что фокус F имеет координаты ; приняв этово внимание, находим:

.

Обозначим через Q основание перпендикуляра, опущенногоиз точки М на директрису. Очевидно, точка Q имеет координаты отсюда, получаем:


число положительное; это следует из того, что М (х; у) должна находиться с той стороны от директрисы,гденаходится фокус, т. е. должно быть , откуда .

Заменяя r и d , найдем

Это и есть уравнение рассматриваемой параболы, так как ему удовлетворяют коорди­наты точки

М (х; у), когда точка М лежит на данной параболе.

Возведем обе части равенства в квадрат; получим:

или

у2 =2рх.

Это уравнение называется каноническим уравнением параболы. Уравнение у2 =2рх, определяющее параболу в некоторой системе декартовых прямоугольных координат, есть уравнение второй сте­пени; таким образом, парабола есть линия второго порядка.

Министерство образования РФ

Пензенская Государственная Архитектурно-Строительная

Академия

РЕФЕРАТ

Тема: «Кривые и поверхности второго порядка»

Выполнил: Богданович Ольга

Специальность: ОБД

Обозначение: 240400 Группа: ОБД-11

Проверил: Фадеева Г.Д.

Оценка:

Пенза – 2000.

Кривые

второго

порядка

Поверхности

второго

порядка

Эллипсоид

Однополостный гиперболоид

Двухполостный гиперболоид

Конус

Эллиптический параболоид

Гиперболический параболоид

Эллиптический цилиндр

Гиперболический цилиндр

Параболический цилиндр

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита01:22:40 02 ноября 2021
.
.01:22:39 02 ноября 2021
.
.01:22:38 02 ноября 2021
.
.01:22:37 02 ноября 2021
.
.01:22:37 02 ноября 2021

Смотреть все комментарии (23)
Работы, похожие на Реферат: Кривые и поверхности второго порядка

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(294399)
Комментарии (4230)
Copyright © 2005 - 2024 BestReferat.ru / реклама на сайте