Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Доклад: Перспективные архитектуры генетического поиска

Название: Перспективные архитектуры генетического поиска
Раздел: Рефераты по информатике, программированию
Тип: доклад Добавлен 01:31:44 25 марта 2005 Похожие работы
Просмотров: 210 Комментариев: 19 Оценило: 3 человек Средний балл: 5 Оценка: неизвестно     Скачать

В.В Курейчик

В последнее время появились новые «нестандартные» архитектуры генетического поиска, позволяющие в большинстве случаев решать проблему предварительной сходимости алгоритмов. Это методы миграции и искусственной селекции [1], метагенетической параметрической оптимизации [2], стохастически-итерационные генетические и поисковые [3], ?прерывистого равновесия? [4], объединения генетического поиска и моделирования отжига [5].В [1] в отличие от обыкновенных ГА выполняется макроэволюция, т.е. создается не одна популяция, а некоторое множество популяций. Генетический поиск здесь осуществляется путем объединения родителей из различных популяций. В отличие от [1-5] предлагается модифицированная архитектура генетического поиска с миграцией и искусственной селекцией (рис.1.).Здесь блоки 1 - 3 представляют собой простой или модифицированный ГА. Отметим, что в каждом блоке выполняется своя искусственная селекция. В первом блоке селекция на основе рулетки. Во втором блоке используется селекция на основе заданной шкалы. В третьем блоке - элитная селекция. В блок миграции каждый раз отправляется лучший представитель из популяции. Связь между блоками 1 - 3 осуществляется путем последовательной цепочки 1 - 2, 2 - 3.Отметим, что можно организовать различное количество связей между блоками, такого типа, как по принципу полного графа, по принципу звезды и т.д. Такая схема селекции в случае наличия большого количества вычислительных ресурсов может быть доведена до N блоков. Причем N-1 блоков могут параллельно осуществлять эволюционную адаптацию и через блоки миграции обмениваться лучшими представителями решений. Последний блок собирает лучшие решения, может окончить результат работы или продолжить генетическую оптимизацию. Такая схема оптимизации в отличие от существующих позволяет во многих случаях выходить из локальных оптимумов. Для повышения эффективности такой архитектуры в САПР используют метагенетическую оптимизацию (МГО). Она заключается в следующем (рис.2). Основным является первый блок, в котором осуществляется реализация генетического алгоритма, генерация новых решений, определение моделирующей функции и использование предыдущих решений для генерации лучших результатов. Второй блок позволяет использовать «историю» предыдущих решений для генерации лучшего множества параметров. В третьем блоке генерируется новое множество оптимизационных параметров. Используя МГО оптимизационный процесс в САПР, можно случайным, направленным или случайно-направленным способом генерировать начальные популяции, моделировать каждую индивидуальность посредством выполнения ГА на основе реализации генетических операторов. Можно случайно выбирать родителей из популяции с вероятностью селекции каждого элемента пропорционально его значению. Причем, вероятность выполнения каждого оператора может определяться пропорционально его öåëåâîé ôóíêöèè. Окончательное множество параметров селектируется после моделирования из конечной популяции. Отметим, что для каждой задачи проектирования СБИС будет строиться свой конкретный метагенетический алгоритм.

Рис 1. Модифицированная схема миграции и искусственной селекции.

Рис. 1

Для построения начальной популяции предлагается использовать Стохастически - итерационный метод. Он заключается в следующем. На основе генетического поиска определяются стартовые точки для направленного поиска. Причем, направленный поиск осуществляется совместно с генетическими операторами. После нахождения стартовых точек можно параллельно использовать такие методы оптимизации, как золотого сечения, градиентного спуска, поиска в глубину и ширину, ветвей и границ и др.

Метод прерывистого равновесия [4] основан на палеонтологической теории прерывистого равновесия, которая описывает быструю эволюцию за счет вулканических и других изменений земной коры. Для применения данного метода в технических задачах в предлагается после каждой генерации случайным образом перемешивать индивидуальности в популяции, а затем формировать новые текущие генерации. Здесь можно предложить, как аналог из живой природы, бессознательный отбор родительских пар и синтетический отбор лучших родительских пар. Далее случайным образом смешать результаты обоих отборов и не оставлять размер популяции постоянным, а управлять им в зависимости от наличия лучших индивидуальностей. Такая модификация метода прерывистого равновесия может позволить сократить неперспективные популяции и расширить популяции, в которых находятся лучшие индивидуальности. Согласно [4] метод прерывистого равновесия - это мощный стрессовый метод изменения окружающей среды, который используется для эффективного выхода из локальных ям.

Объединение ГА и моделирование отжига позволяют получать более качественные результаты за счет усложнения процедуры оптимизации [5]. Например, на основе простого ГА можно получить некоторое подмножество родителей с лучшими характеристиками и для одного из них (наилучшего) или некоторого подмножества применить оптимизационную процедуру моделирования отжига. Такое объединение можно делать различными способами. К сожалению, процедуры моделирования отжига требуют больших вычислительных затрат. Поэтому, такие подходы применяют при проектировании элементов топологии внутри ячеек, когда их число 50.

Отметим, что основные задачи повышения качества решений проектирования СБИС с применением ГА - это выход из локальных ям, а также оптимальный выбор генетических операторов и методов селекции.

Список литературы

Potts C.I., Giddens T.D., Yadav S.B. The Development and Evaluation of an Improved Genetic Algorithm Based on Migration and Artificial selection. IEEE Trans. on Systems, Man and Cybernetics, vol.24, No.1, Sammary 1994. P. 73 - 86.

Shahookar K.,Mazmunder P. A Genetic Approach to standart Cell Placement Using Meta-Genetic Parameter Optimization, IEEE Trans. on CAD, Vol.9, No.5, May, 1990. P. 500 - 511.

Ackley D.H. A connectionist Machine for Genetic Hillclimbing. Kluwer Academic Publishers, Boston, MA, 1987. - 240 г.

Cohoon J.P., Paris W.D. Genetic Placement , IEEE Trans. on CAD, Vol.6, No 6, November, 1987. P. 956 - 964.

Davis L., ed. Genetic Algorithms and Sivulated Annealing. San Mateo. Morgan Kaufman Publisher, 1987. - 216 p.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита19:42:01 01 ноября 2021
.
.19:42:00 01 ноября 2021
.
.19:41:59 01 ноября 2021
.
.19:41:59 01 ноября 2021
.
.19:41:58 01 ноября 2021

Смотреть все комментарии (19)
Работы, похожие на Доклад: Перспективные архитектуры генетического поиска

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(294399)
Комментарии (4230)
Copyright © 2005 - 2024 BestReferat.ru / реклама на сайте