Перспективные технологии преобразования возобновляемой энергии
Бучацкий П.Ю.
Старший преподаватель кафедра автоматизированных ситем обработки информации и управления инженерно^изического факультета Адыгейского государственного университета,
Для эффективного использования возобновляемых источников энергии (ВИЭ) в энергетической системе региона важную роль играют технологии преобразования возобновляемой энергии. Их высокая стоимость, а как следствие и высокая стоимость получаемой энергии, зависит от небольшой плотности энергетических потоков, их непостоянства во времени и необходимости значительных затрат на оборудование, обеспечивающее сбор, аккумулирование и преобразование энергии. Поэтому применение перспективных технологий преобразования энергии позволит существенно сократить стоимость получаемой энергии и тем самым вовлечь в энергетическую систему региона природные ВИЭ [1].
На основе анализа различных источников информации установлены наиболее перспективные технологии преобразования основных видов возобновляемой энергии (солнечной, ветра, биомасс, приливов и волн) (табл. 1) [2-4].
В результате определено, что основные исследования в области развития ВИЭ направлены на снижение себестоимости преобразователей за счет повышения их КПД, снижения потребления материалов, повышения энергоемкости, использования органических материалов взамен дефицитного сырья.
Перспективные технологии преобразования возобновляемой энергии
| Вид возобновляемой энергии
|
Недостатки вида ВИЭ и технологии его преобразования
|
Перспективные технологии преобразования
|
| Солнечная
|
Непостоянность и непредсказуемость основного источника энергии; зависимость от погодных и климатических условий; необходимость в накопителях энергии или дополнительных источниках энергии; высокая стоимость фотоэлектрических систем (ФЭС) с учетом необходимости в накопителях и обратных преобразователях переменного тока; сравнительно низкий КПД; низкая энергоемкость, вследствие чего под ФЭС требуются большие территории.
|
усовершенствованные неорганические тонкопленочные фотоэлектрические модули (ФЭМ) - сферические ФЭМ на основе селенида меди-индия (CIS) и тонкопленочные поли- кристаллические кремниевые ФЭМ;
органические ФЭМ (в том числе фотосенсибилизированные красителем ФЭМ на основе органических полимеров);
Забиваем Сайты В ТОП КУВАЛДОЙ - Уникальные возможности от SeoHammer
Каждая ссылка анализируется по трем пакетам оценки: SEO, Трафик и SMM.
SeoHammer делает продвижение сайта прозрачным и простым занятием.
Ссылки, вечные ссылки, статьи, упоминания, пресс-релизы - используйте по максимуму потенциал SeoHammer для продвижения вашего сайта.
Что умеет делать SeoHammer
— Продвижение в один клик, интеллектуальный подбор запросов, покупка самых лучших ссылок с высокой степенью качества у лучших бирж ссылок.
— Регулярная проверка качества ссылок по более чем 100 показателям и ежедневный пересчет показателей качества проекта.
— Все известные форматы ссылок: арендные ссылки, вечные ссылки, публикации (упоминания, мнения, отзывы, статьи, пресс-релизы).
— SeoHammer покажет, где рост или падение, а также запросы, на которые нужно обратить внимание.
SeoHammer еще предоставляет технологию Буст, она ускоряет продвижение в десятки раз,
а первые результаты появляются уже в течение первых 7 дней.
Зарегистрироваться и Начать продвижение
термо-фотоэлектрические (TPV) ячейки с узкой запрещенной зоной (low gap-band).
|
| Ветровая
|
Непостоянность ветра, как источника энергии; нарушение эстетического пейзажа; сложности с подключением к существующим сетям (ввиду отдаленности наиболее благоприятных территорий); стоимость ветряной турбины.
|
увеличение генерирующего потенциала (увеличение размеров турбин, высоты турбинных башен, использование оффшорных ветров и ветров на больших высотах);
улучшение материалов (снижение зависимости башенных конструкций от стальных элементов, снижение веса пропеллеров (использование углеродных волокон и высокоинтенсивного углепластика));
улучшение системы привода (редуктор, генератор, электроника) (развитие технологии сверхпроводников для более легких и эффективных электрогенераторов, использование постоянных электромагнитов в электрогенераторах);
использование новых видов ветряных турбин: летающих и турбин с вертикальной осью;
генерация на ветрах низких скоростей.
|
| Вид возобновляемой энергии
|
Недостатки вида ВИЭ и технологии его преобразования
|
Перспективные технологии преобразования
|
|
| Биоэнергия
|
Необходимость земельных и водных ресурсов для выращивания (конкурирует с производством пищевых продуктов); вредные выбросы при сжигании (NO2, сажа, зола, CO, CO2); сезонный характер роста некоторых культур; проблемы масштабирования генерирующих мощностей.
|
совместное сжигание смесей биомассы с традиционными видами топлива;
использование новых видов топлива из биомасс, включая различные бытовые и промышленные отходы;
переоборудование существующих генерирующих мощностей на углеводородном топливе под использование биомасс;
повышение теплоотдачи пел- лет биомассы за счет сушки;
интегрированная газификация биомасс с топливными ячейками.
|
|
| Приливная и волновая энергии
|
Высокие капитальные затраты на строительство; географическая привязка к береговой линии и удаленность от существующих электрических сетей; негативное влияние на окружающую среду; зависимость от природных явлений; дороговизна и сложность техобслуживания; быстрый износ генерирующего оборудования под воздействием воды.
|
использование мостов в качестве приливных электростанций;
колеблющееся подводное крыло (применяется вместо вращающихся элементов плавники (крылья), которые приводятся в движение течением);
системы с использованием трубки Вентури;
магнитогидродинамические системы (MHD) (используют криогенно охлажденную сверхпроводящую электромагнитную катушку, размещенную на морском дне, где проходящие приливные волны);
Сервис онлайн-записи на собственном Telegram-боте
Попробуйте сервис онлайн-записи VisitTime на основе вашего собственного Telegram-бота:
— Разгрузит мастера, специалиста или компанию;
— Позволит гибко управлять расписанием и загрузкой;
— Разошлет оповещения о новых услугах или акциях;
— Позволит принять оплату на карту/кошелек/счет;
— Позволит записываться на групповые и персональные посещения;
— Поможет получить от клиента отзывы о визите к вам;
— Включает в себя сервис чаевых.
Для новых пользователей первый месяц бесплатно.
Зарегистрироваться в сервисе
использование волновых аттенюаторов - преобразователей волновой энергии в виде змеевидных устройств, наполовину погруженных в воду;
волновые генераторы на принципе обратного маятника, генераторы с жидким / газообразным рабочим телом.
|
|
| |
|
|
|
|
|
Рассмотрим основные технологии преобразования энергии, получаемой от ВИЭ. Широкое применение в разных странах находят фотоэлектрические преобразователи (ФЭП), в развитии которых выделяют три поколения, представленных в таблице 2.
Поколения фотоэлектрических преобразователей
| |
I-е поколение
|
II-е поколение (тонкопленочные)
|
III-е поколение
|
| Моно- и по- ликристал- лический кремний
|
Аморфный
кремний
|
Теллурид
кадмия
|
Селинид
меди
(индия)
галлия
(CI(G)S)
|
Микро и нанокремний
|
Фотосен-
сибилизи-
рованные
красите
лем
(DSSC-
ячейки
Гретцеля)
|
Органиче
ские
|
Концентрирую- щие ФЭМ AmBV мульти- соединения
|
Термо- ФЭМ с запрещенной зоной
|
| Текущий КПД ФЭМ
|
11-19%
|
4-8%
|
10-11%
|
7-12%
|
7-9%
|
2-4%
|
4-6%
|
- 25%
|
|
| Площадь, на 1 кВт
|
7-8 м2
|
15 м2
|
10 м2
|
10 м2
|
12 м2
|
|
|
|
|
| Потенци
альный
КПД
|
22%
|
10%
|
16%
|
20%
|
13%
|
8-12% (до 24%)
|
8-10%
|
Выше 40%
|
30%
|
Кристаллические фотоэлектрические преобразователи (ФЭП) первого поколения, обладая максимальным показателем КПД, характеризуются высокой себестоимостью, хрупкостью, долгой капиталоемкой и энергоемкой производственной цепочкой. Тонкопленочные ФЭП, несмотря на увеличение доли рынка, не смогли обогнать кристаллические модули по показателю цена/качества. В ближайшей перспективе наиболее эффективная на сегодняшний момент тонкопленочная технология - CdTe - рискует столкнуться с экологическим барьером в форме директивы ЕС RoHS и попасть под запрет на крупнейшем европейском рынке.
Указанные факторы привели к необходимости разработки новых видов ФЭП («третьего поколения»), предусматривающих использование материалов, которые дружественны природе (подвергаются рециклингу по окончанию срока службы), отличаются низкой себестоимостью (полимеры, титановые белила и проч.) и наносятся печатными или другими методами с низкой себестоимостью. Органические ФЭП (OPV) наравне с фотосенсибилизированными красителем ФЭП (DSC) в настоящее время рассматриваются как наиболее близкие к коммерциализации и перспективные технологии третьего поколения.
Графики построены на основании опубликованных материалов и доклада Д. Ка- хена. Из рисунка 1 видно, что наибольшие значения КПД солнечных фотоэлементов были достигнуты для систем на основе материалов AIIIBV, в то время как для остальных полупроводников КПД в настоящее время не превышает 20-25%.
Сходные результаты были опубликованы в официальном бюллетене EPRI (Electric Power Research Institute), на основе данных Департамента энергетики США [2].
Ветроэнергетика является одним из наиболее популярных и быстро развивающихся направлений альтернативной энергетики. Тем не менее, ее распространение так же ограничивается непостоянностью ветра, как источника энергии, нарушением эстетического пейзажа ввиду установки огромных 100-метровых ветровых мельниц и сложностями с подключением к существующим сетям ввиду отдаленности наиболее
Годы 1960 1980 2000 2020 2040

Рис. 1. Изменение эффективности (КПД) различных типов полупроводниковых преобразователей солнечной энергии:
1 - кристаллический Si; 2 - аморфный Si; 3 - AIHBV ФЭП (в^ючая тандемные);
4 - ФЭП CIS (CdlnSe); 5 - ячейки Гретцеля; 6 - органические СФЭ
Анализ изменения КПД различных типов ФЭП с момента их появления, а также экстраполяция полученных зависимостей до 2050 года приведены на рисунке 1.
благоприятных территорий для установки ветрогенераторов от существующей инфраструктуры [3].
Ветроэнергетические установки (ВЭУ) обеспечивают преобразование энергии ветрового потока в механическую энергию вращающегося ветроколеса, а затем в электрическую энергию. Известны две основные конструкции ветроагрегатов: горизонтально-осевые и вертикально-осевые ветродвигатели. Оба типа ВЭУ имеют примерно равный КПД, однако наибольшее распространение получили ветроагрегаты первого типа. Мощность ВЭУ может быть от сотен ватт до нескольких мегаватт [3].
Технологии сетевой ветроэнергетики развиваются в направлении увеличения единичной мощности ВЭУ, сооружения крупных ветропарков с единой инфраструктурой, а также все более активным освоением шельфовых зон и выносом ветропарков в море. Все эти направления могут объясняться стремлением снизить удельные капитальные вложения в ВЭУ и ВЭС и снизить себестоимость производства электроэнергии. За 25 лет единичная мощность серийных ВЭУ возросла с 30 до 7000 кВт (в 200 раз), диаметр ветроколеса увеличился с 15 до 126 метров (более чем в 8 раз), годовое производство электроэнергии одним агрегатом увеличилось в 600 раз. Значительные изменения с течением времени претерпели компоновочные решения по размещению оборудования в гондоле. В отличие от редукторных все большее распространение получают безредукторные схемы соединения ветроколеса и генератора, а также схемы выдачи мощности с частотным регулированием, что позволяет более эффективно управлять ВЭУ. Кроме того, имеются примеры ВЭУ с редуктором и ротором на постоянных магнитах (WWD-3 MW).
Удельные капитальные вложения в ВЭУ снизились примерно в 2 раза и составляют сейчас около 1000-1300 евро/кВт для наземных ветропарков и около 2000 евро/кВт для морских ВЭС, а себестоимость энергии снизилась в 3-4 раза и составляет около 5 евроцентов за кВт/ч для наземных ВЭС и около 7 евроцентов для морских.
Широкое распространение в ряде стран получило производство и использование биотоплив, производимых из возобновляемых видов сырья. Преимуществами биотоплив являются:
использование возобновляемых видов сырья;
возможность получить экологически более чистое топливо (снижение вредных выбросов почти в 2 раза по сравнению с традиционным нефтяным топливом);
уменьшение зависимости от импорта дорожающей нефти.
Биотопливо отличается хорошими эксплуатационными характеристиками; его использование в смеси с традиционным топливом практически не требует изменений в инфраструктуре топливопотребления.
Во многих странах мира развернуты исследования и разработки в области технологий получения биотоплива второго поколения, а именно, из биомассы (целлюлоза, отходы лесной и деревообрабатывающей промышленности, сельскохозяйственные отходы, водоросли, лигнин и т.п.) [4].
Среди технологий второго поколения называют пирогенетическую переработку древесины; анаэробные процессы; весьма перспективный процесс BTL (biomasse to liquide), состоящий из стадий спекания биомассы посредством низкокислородного пиролиза, газификации полученных методом спекания гранул, каталитического синтеза по Фишеру-Тропшу, а также получение биоэтанола из биомассы древесины путем ферментации или гидролиза с последующим дегидрированием биоэтанола в био- бутанол и др. [4].
Весьма перспективным энергоносителем являются морские волны, которые способны развивать наибольшую для возобновляемых источников удельную мощность.
Так средняя величина потока энергии набегающей волны, зависящей от амплитуды и частоты волн, при периоде 7-10 с и сравнительно небольшой высоте 2 м в расчете на 1 м фронта волны составляет 40-50 кВт. В отдельных акваториях на средних широтах обоих полушарий Земли волновая активность характеризуется величинами удельных потоков 70-100 кВт/м.
Основные трудности, с которыми приходится иметь дело разработчикам волновых энергоустановок, исходят из необходимости создания преобразователей волновой энергии, пригодных для эффективной работы в условиях непостоянства амплитуд, фаз и направлений распространения волн, а также некотого характерного спектра частот возбуждающих сил. При этом устройства должны обладать совершенными конструктивными и эксплуатационными характеристиками, быть надежными и экономически приемлемыми. Несмотря на то, что пока волновые энергоустановки не достигли технического уровня, при котором возможно их массовое практическое применение, целесообразно продолжать исследования и разработки в этом направлении [3].
Стоимость энергии, получаемой от ВИЭ, в течение последних лет стремительно снижается, и в условиях противоположной тенденции роста цен на традиционные энергоресурсы многие технологии использования ВИЭ становятся все более конкурентоспособными. Это относится к быстро прогрессирующим технологиям использования биомассы для производства тепла и электроэнергии, солнечным водонагревателям, фотопреобразователям, мини- и микро-ГЭС, ветроустановкам, теплонасосным системам теплоснабжения. Наивысшую конкурентоспособность они проявляют в децентрализованных системах тепло- и электроснабжения. Вместе с тем, во многих случаях ВИЭ пока еще уступают технологиям, основанным на использовании традиционных видов топлива, прежде всего, из-за сравнительно высоких начальных капитальных затрат.
|