Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Проверка непротиворечивости исходных описаний конечных автоматов

Название: Проверка непротиворечивости исходных описаний конечных автоматов
Раздел: Рефераты по информатике, программированию
Тип: реферат Добавлен 07:18:16 18 апреля 2005 Похожие работы
Просмотров: 57 Комментариев: 21 Оценило: 4 человек Средний балл: 5 Оценка: неизвестно     Скачать

Ю.М. Вишняков

В 60-70-х годах на теорию конечных автоматов (КА), как универсальный инструментарий описания и синтеза цифровых схем, возлагались большие надежды. Однако возможности технологического базиса и информационные технологии того времени ограничили практическое использование теории КА только рамками структурного синтеза. Абстрактный синтез так и остался предметом теоретических изысканий. Сегодня в автоматизированном проектировании происходит интенсивный переход к интегрированным инструментальным средствам, осуществляющим сквозную разработку проектов на всех уровнях. В таких системах наряду со стандартными средствами проектирования топологии и моделирования должны присутствовать и средства реализация проектных процедур логического синтеза. Таким образом сегодня сформированы практические потребности и имеются все условия, чтобы абстрактная теория КА заняла достойное место в автоматизированном проектировании. Однако в этом плане она должна быть переработана в контексте сквозного автоматизированного проектирования.

В рамках этой цели предлагаемая работа развивает абстрактный синтез в части построения непротиворечивых описаний КА на языке регулярных выражений.

Пусть заданы входной X={X1 ,X2 ,...,Xn } и выходной Y={Y1 ,Y2 ,...,Ym } алфавиты. КА перерабатывает входные слова (цепочки) aÎX* в выходные bÎY* в соответствии с алфавитным (автоматным) оператором b=F(a) (А-оператор). Доказано, что обрабатываемые КА множества цепочек, относятся к классу регулярных множеств (РМ), которые задаются через правила их порождения, называемые регулярными выражениями (РВ) [1].

В алгебре РВ по определению Æ, l (пустая цепочка), X1 , X2 , ..., Xn являются элементарными РВ. Если e1 , e2 , e - РВ, то результаты операций e1 *e2 - (конкатенации), e1 |e2 (ИЛИ), {e} (Клини), (e) (круглые скобки) также являются РВ. Также отметим, что порождаемое множество цепочек или язык РВ e обозначают через |e|.

Представим А-оператор через систему РВ (СРВ). Для этого выделим в X* подмножества регулярных цепочек E1 , E2 , ..., Em (в общем случае бесконечных) таким образом, чтобы цепочка aÎE1 приводила к появлению на выходе КА буквы Y1, aÎE2 - буквы Y2 , aÎEm -.Ym . Для случая aÎX*\(E1 E2 ...Em ) определим дополнительную букву Ym+1 . Также введем условие непротиворечивости Ei Ej = (i,j=1..m, i¹j). Представим каждое множество Ei порождающим его регулярным выражением (РВ) ei (|ei |= Ei ). Тогда представляющая КА система соотношений вида (1) и называется СРВ:

(1)

Поскольку взаимно однозначное соответствие между языком и порождающим его РВ отсутствует (например, РВ а{a} и {a}a порождают различными способами один и тот же язык), построение непротиворечивой CРВ требует далеко нетривиальных действий. И в этой связи можно предположить, что средства исследования непротиворечивости СРВ нужно искать вне алгебры РВ.

Ближайшей моделью к РВ, которой может быть промоделирован разбор цепочек, является система переходов (СП), дуги которой взвешены буквами входного алфавита. КА с выходным алфавитом Y={0,1}, распознающий язык |e|, называют конечным распознавателем (КР). Представление КР в виде диаграммы состояний (рис.1), в которой начальная вершина S и конечная вершина Z связаны дугой e называется системой переходов (СП). Здесь любая цепочка aÎ|e| переводит КА из состояния S в состояние Z [2].

СП элементарных РВ приведены на рис.2. В соответствии с алгеброй РВ СП любого РВ e можно представить в виде композиции элементарных СП. Такую СП будем называть приведенной и обозначать через СПп . Введем на СПп ряд понятий.

Определение 1. Если из некоторого состояния Q исходит l-дуга в состояние A1 , из состояния A1 в состояние A2 и т.д. до состояния Т, а из состояния Т нет исходящих l-дуг, то будем говорить, что состояние Q связано с состоянием Т линейным l-путем.

Определение 2. Если из некоторого состояния Q исходит l-дуга в состояние А1 , а из состояния А1 в состояние А2 и т.д. состояния Ak , а из состояния Ak в состояние Q, то будем говорить, что состояние Q, A1 , A2 ,..., Ak входят в один и тот же кольцевой l-путь.

Длиной l-пути будем называть число входящих в него l-дуг.

Определение 3. Блоком состояний (БС) для некоторого состояния Q БС(Q) назовем множество состояний, включающих само состояние Q и все состояния , входящие в l-пути, исходящие из состояния Q.

Если из состояния Q не исходит l-путей, то БС(Q)= {Q}. В дальнейшем БС(Q), включающий более чем одно состояние, будем обозначать l- БС(Q).

Определение 4. Если из состояния Q исходит один или несколько l-путей единичной длины, то l- БС(Q) назовем простым, в противном случае составным.

Введем на СП функцию разбора m, представляющую отображение {БС}Х ® БС. Ее по аналогии с функцией переходов запишем в виде БС=m(БС(Q),xi ). Цепочка a допускается КА, если существует функция разбора вида БС(Zi )=m(БС(S),a), где S - начальное состояние, Zi - заключительное состояние СП КА.

Пусть задана СРВ e1 , e2 , ..., em и для каждого РВ выполнено независимое построение СПп . Здесь S1 , S2 , ..., Sm начальные и Z1 , Z2 , ..., Zm заключительные состояния соответствующих СПп . Введем следующую проверочную таблицу (ПТ), на основе которой будем одновременно строить функцию разбора для всех РВ. ПТ содержит m+1 столбец, где 1,2,...,m столбцы, соответствуют буквам входного алфавита X, а 0-столбец представляет БС, именующие строки. Множество строк ПТ разбито на группы, каждая из которых может содержать до m строк по числу РВ, и представляет БС для всех РВ, полученных на некотором шаге построения функции разбора. В клетку пересечения строки и столбца записывается вычисленное значение функции разбора для данного БС и входной буквы.

Алгоритм проверки непротиворечивости СРВ.

1. Построить пустую ПТ, сформировать БС(S1 ), БС(S2 ),..., БС(Sm ) и поименовать ими первую группу строк;

2. Для всех букв xi ÎX вычислить функцию разбора;

3. Образовать новую группу строк и поименовать их новыми БС, полученными в п.2 и не содержащими заключительных состояний Zi .

4. Повторять п.2 до тех пор, пока не перестанут образовываться новые БС, не содержащие заключительных состояний.

Выход: СРВ противоречива, если на некотором шаге для одной и той же входной буквы получены более чем один БС, содержащий заключительные состояния.

В качестве примера ниже представлены проверяемая на непротиворечивость СРВ, СП, входящих в нее РВ (рис.4), и соответствующая ПТ:

(2)

Проверочная таблица

Как это видно из построения ПТ СРВ (2) является непротиворечивой.

Итак, предлагаемая в работе процедура проверки на непротиворечивость исходных описаний КА, может быть положена в основу построения одной из функциональных частей программной подсистемы логического синтеза интегрированной инструментальной среды САПР. Это позволит на ранних этапах проектирования выявить корректность исходного описания объекта проектирования.

Список литературы

Вавилов Е.Н., Портной Г.П. Синтез схем электронных цифровых машин. М.: Сов.радио, 1963. 440 с.

Грис Д. Конструирование компиляторов для цифровых вычислительных машин. М.: Мир, 1975, 545 с.

Вишняков Ю.М. Инструментарий разработчика СБИС. - Таганрог: ТРТУ, 1993. 178 с.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита19:39:10 01 ноября 2021
.
.19:39:09 01 ноября 2021
.
.19:39:08 01 ноября 2021
.
.19:39:08 01 ноября 2021
.
.19:39:07 01 ноября 2021

Смотреть все комментарии (21)
Работы, похожие на Реферат: Проверка непротиворечивости исходных описаний конечных автоматов

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(294399)
Комментарии (4230)
Copyright © 2005 - 2024 BestReferat.ru / реклама на сайте