| Варивант №2
З
адание 1
Дан треугольник ABC, где А(-3,2), В(3,-1), С(0,3). Найти:
1. Длину стороны АВ;
2. Внутренний угол А с точностью до градуса;
3. Уравнение и длину высоты, опущенной из вершины С;
4. Точку пересечения высот;
5. Уравнение медианы, опущенной из вершины С;
6. Систему неравенств, определяющих треугольник АВС;
7. Сделать чертеж;
Решение:
1. Найдем координаты вектора АВ:

Длина стороны АВ равна:

2. Угол А будем искать как угол между векторами АВ и АС(-3,1)

Тогда 
3. Прямая СК перпендикулярна АВ проходит через точку С(0,3) и имеет нормалью вектор .
По формуле получим уравнение высоты:

Сокращаем на 3 получим уравнение высоты:

4. Координаты основания медианы будут:
;
Уравнение медианы найдем, пользуясь данной формулой, как уранение прямой, проходящей через 2 точки: С и М


Так как знаменатель левой части равен нулю, то уравнение медианы будет иметь такой вид х=0
5. Известно что высоты треугольника пересекаются в одной точке Р. Уравнение высоты СК найдено, выведем аналогично высоту BD проходящую через точку В перпендикулярно вектору 

Координаты точки Р найдем как решение системы уравнений:

х=11 у=23
6. Длину высоты hc будем ее искать как расстояние от точки С до прямой АВ. Эта прямая проходит через точку А и имеет направляющий вектор .


Теперь воспользовавшись формулой

Подставляя в нее координаты точки С(0,3)

Задание 2
Даны векторы Доказать, что образуют базис четырехмерного пространства, и найти координаты вектора «в» в этом базисе.

Решение:
1. Докажем, что подсистема линейно независима:


Из четвертого уравнения имеем , что , тогда из первого, второго и третьего следует, что . Линейная независимость доказана.
Докажем, что векторы можно представить в виде линейных комбинации векторов .
Очевидно,

Найдем представление через .


Из четвертого уравнения находим и подставляем в первые три

Получили , что данная система векторов не может называться базисом!
Задание 3
Найти производные функций:


Задание 4.
Исследовать функцию и построить ее график

1. Область определения:
, то есть 
2. Кривая имеет вертикальную ассимптоту х=-1, так как

Находим наклонные асимптоты. а то означает, что есть вертикальная асимптота у=0.
3. Функция общего вида, так как и 
Забиваем Сайты В ТОП КУВАЛДОЙ - Уникальные возможности от SeoHammer
Каждая ссылка анализируется по трем пакетам оценки: SEO, Трафик и SMM.
SeoHammer делает продвижение сайта прозрачным и простым занятием.
Ссылки, вечные ссылки, статьи, упоминания, пресс-релизы - используйте по максимуму потенциал SeoHammer для продвижения вашего сайта.
Что умеет делать SeoHammer
— Продвижение в один клик, интеллектуальный подбор запросов, покупка самых лучших ссылок с высокой степенью качества у лучших бирж ссылок.
— Регулярная проверка качества ссылок по более чем 100 показателям и ежедневный пересчет показателей качества проекта.
— Все известные форматы ссылок: арендные ссылки, вечные ссылки, публикации (упоминания, мнения, отзывы, статьи, пресс-релизы).
— SeoHammer покажет, где рост или падение, а также запросы, на которые нужно обратить внимание.
SeoHammer еще предоставляет технологию Буст, она ускоряет продвижение в десятки раз,
а первые результаты появляются уже в течение первых 7 дней.
Зарегистрироваться и Начать продвижение
4. Функция периодичностью не обладает
5. Находим производную функции

Получаем 3 критические точки х=-1 х=1, и х=5.
Результаты исследования на монотонность и экстремумы оформляется в виде таблицы
| х
|

|

|
1
|

|
5
|

|
| y’
|
-
|
-
|
0
|
+
|
0
|
-
|
| y
|
убывает
|
убывыает
|
0
min
|
возрастает
|
0,074
|
убывает
|
6. Находим вторую производную функции

Получаем критические точки х=-1; х=0,22; х=6,11
Результаты исследований на выпуклость и точки перегиба оформляем в виде таблицы.
| х
|

|

|
0.22
|

|
6.11
|

|
| y”
|
-
|
+
|
0
|
+
|
0
|
-
|
| y
|
выпукла
|
вогнута
|
0,335
перегиб
|
вогнута
|
0,072
|
выпукла
|
7. Находим точки пересечения графика с осями координат Ох и Оу
получаем точку (0;1); получаем точку (1;0)
8. При х=-2, у=-9, при х=-5, у=-0,56, при х=-10, у=-0,166
9. Строим график в соответствии с результатами исследований:

Задание 5
Найти неопределенные интегралы и проверить их дифференцированием.
а) ; б) ; в) ; г) 
Решение:
а) сделаем подстановку sin3x=t, тогда dt=cos3x dx, следовательно:

Проверка:

б) сделаем подстановку 

Проверка:

в) Воспользуемся способом интегрирования по частям

Проверка:

г) воспользуемся способом интегрирования рациональных дробей


Проверка:

Задание 6
Вычислить площадь фигуры, ограниченной графиками функций:

Решение:
находим координаты точек пересечения заданных графиков функций:
приравнивая правые части, получаем квадратное уравнение
корни этого квадратного уравнения 
следовательно : , и значит координаты точек пересечения А(0,7) и В(5,2). Точка х=2 находится между точками 0 и 5. Подставляя в уравнения 2 получаем: 
т.к получаем:

|