Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Малая теорема Ферма

Название: Малая теорема Ферма
Раздел: Рефераты по математике
Тип: реферат Добавлен 04:41:27 13 января 2013 Похожие работы
Просмотров: 103 Комментариев: 7 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

? — классическая теорема теории чисел, которая утверждает, что

Если p — простое число, и не делится на , то Другими словами, при делении нацело на даёт в остатке 1.

Равносильная формулировка:

Для любого простого и целого :

делится на

Теорема называется малой во избежание путаницы с Великой теоремой Ферма.

Доказательство

Докажем, что для любого простого p и целого неотрицательного a, делится на p. Доказываем индукцией по a.

База. Для a=0, и делится на p.

Переход. Пусть утверждение верно для a=k. Докажем его для a=k+1.

Но делится на p по предположению индукции. Что же касается остальных слагаемых, то . Для , числитель этой дроби делится на p, а знаменатель — взаимно прост с p, следовательно, делится на . Таким образом, вся сумма делится на p.

Для отрицательных a и нечётных p теорему легко доказать подстановкой b=-a. Для отрицательных a и p=2 истинность теоремы следует из ?

Свойства и некоторые следствия

Если — простое число, а и — такие положительные целые числа, что , тогда . Это утверждение используется в системе шифрования с открытым ключом RSA.

Если — простое число, отличное от 2 и 5, то число , запись которого состоит из одних девяток, делится на . Отсюда легко следует, что для любого целого числа , которое не делится на 2 и на 5, можно подобрать число, состоящее только из девяток, которое делится на [1]. Этот факт используется в теории признаков делимости и периодических дробей.

Обобщения

Малая теорема Ферма является частным случаем теоремы Эйлера, которая, в свою очередь, является частным случаем теорем Кармайкла и Лагранжа для конечных циклических групп.

Малая теорема Ферма также имеет изящное обобщение в теории конечных полей.

Псевдопростые числа

Основная статья: Псевдопростое число

Обращение малой теоремы Ферма неверно, то есть приведенные в определении формулы могут выполняться не только для простых чисел: если и — взаимно простые числа такие, что делится на p, то число может не быть простым. В случае, когда является составным, это число называется псевдопростым по основанию a.

Пример: Ф. Саррус в 1820 году нашёл, что число делится на 341 (потому что N делится на ). Но 341 — составное число: — это первое псевдопростое число по основанию 2.

Число p, являющееся псевдопростым по основанию a для всех a, взаимно простых с p, называется числом Кармайкла (например, 561 — наименьшее из чисел Кармайкла).

Хотя выполнение теоремы Ферма не гарантирует, что p — простое число, теорема может быть полезна для тестирования числа: если не делится на , то p — составное число.

История

Пьер Ферма сформулировал исходное утверждение теоремы около 1636 года. Письмо от 18 октября 1640 года Пьера Ферма к французскому математику Бернару Френиклю (Bernard Frénicle de Bessy) содержало следующее положение: p делит в случае, когда p является простым числом и a не делится на p. Опубликовано в посмертном издании его трудов (1660).

Ещё в древности китайским математикам была известна гипотеза (иногда называемая «Китайской гипотезой»), что p является простым числом в том и только в том случае, когда (фактически, частный случай малой теоремы Ферма)[2]. Тем не менее, обратное утверждение (о том, что из следует, что p простое), а, следовательно, и гипотеза в целом, оказались неверными (см. выше).

Существует также предположение, что китайская гипотеза была выдвинута примерно за 2000 лет до аналогичных работ Ферма. Стоит отметить, что гипотеза могла быть известна и другим математикам древности, даже несмотря на то, что она оказалась частично неверной. Тем не менее, в некоторых источниках[3] утверждается, что предположение относительно столь раннего появления гипотезы является распространённым заблуждением, а в действительности гипотеза была выдвинута лишь в 1872 году.

Сам Ферма оставил свою теорему без доказательства. Первым, кому удалось его найти, был Готфрид Вильгельм Лейбниц, в рукописях которого утверждается, что доказательство ему было известно до 1683 года. Лейбниц не знал о результате Ферма и открыл теорему независимо[1]. Но работа Лейбница не была опубликована, и доказательство (очень похожее) в 1736 году обнародовал Эйлер в статье Theorematum Quorundam ad Numeros Primos Spectantium Demonstratio.

Доказательство малой теоремы Ферма, основанное на том, что целые числа сравнимы в некотором порядке с числами , было опубликовано в 1806 году Джеймсом Айвори.

Список литературы

Винберг Э. Б. Малая теорема Ферма и ее обобщения // Математическое просвещение. — 2008. — В. 12. — С. 43–53.

Гиндикин С. Г. Малая теорема Ферма // Квант. — 1972. — № 10.

Данциг, Т. Числа - язык науки. — М.: Техносфера, 2008. — С. 111. — ISBN 978-5-94836-172-7

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита19:26:46 05 ноября 2021
.
.19:26:45 05 ноября 2021
.
.19:26:42 05 ноября 2021
.
.19:26:39 05 ноября 2021
.
.19:26:37 05 ноября 2021

Смотреть все комментарии (7)
Работы, похожие на Реферат: Малая теорема Ферма

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(294399)
Комментарии (4230)
Copyright © 2005 - 2024 BestReferat.ru / реклама на сайте