Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Сферическая астрономия и кватернионы

Название: Сферическая астрономия и кватернионы
Раздел: Рефераты по математике
Тип: реферат Добавлен 14:49:36 14 июля 2013 Похожие работы
Просмотров: 9 Комментариев: 12 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

А.А.Дмитриевский

Сферическая астрономия занимается изучением видимых положений и движений небесных объектов. В связи с этим её основополагающей задачей является введение систем небесных координат и установление связей между ними.

С этой целью традиционно вводится небесная сфера, а связь между координатами устанавливается с помощью формул сферической геометрии.

Однако эти задачи можно решать совсем по–другому, — кватернионы для этого идеально подходят.

Итак, приступаем.

Вся теория строится для какого–то конкретного наблюдателя, поэтому начало координат помещают в ту точку, где находится наблюдатель.

Далее будем считать для определённости, что наблюдатель находится в Северном полушарии Земли.

Видимые положения небесных объектов характеризуются только лишь направлениями на объект, которые, как известно, задаются в сферической системе координат двумя углами θ и φ.

Или, что то же самое, каждое направление характеризуется тремя направляющими косинусами:

x/r = sinθ′ · cosφ′,

y/r = sinθ′ · sinφ′,

z/r = cosθ′,

здесь штрихи при φ′ и θ′ введены для того, чтобы избежать в дальнейшем пересечения обозначений, x , y , z — декартовы координаты, .

Поэтому направление на небесный объект будем задавать чисто мнимым (векторным) кватернионом с единичным модулем:

q = sinθ′ · cosφ′ · i + sinθ′ · sinφ′ · j + cosθ′ · k,

q · q* = 1,

здесь i, j, k — мнимые единицы, а не орты декартовой системы координат.

Каждая мнимая единица, как и любой другой кватернион, задаёт после выбора декартовой системы координат какое–то вполне определённое направление. Поэтому в дальнейшем, вместо того, чтобы как-то определять декартову систему координат, будем сразу задавать направление кватернионов i, j, k, а затем применять приведённое выше общее выражение для кватернионов с направляющими косинусами.

1. Основные направления.

Основные направления — это особые, объективно выделенные направления, именно поэтому они являются опорными при введении систем небесных координат.

Отвесная линия, зенит, надир.

Отвес — это небольшой груз на шнурке, указывающий направление силы тяжести.

Отвесная линия, т.е. линия отвеса, задаёт два основных направления, которые называются:

— зенит, соответствующее направление противоположно силе тяжести,

— надир, соответствующее направление совпадает с силой тяжести.

Ось мира, Северный и Южный полюс мира.

Наблюдателю представляется, что всё небо вращается как единое целое вокруг оси мира, которая задаёт два направления, — на Северный и на Южный полюс мира.

Наблюдателю представляется, что вращение неба в окрестностях Северного полюса мира происходит против часовой стрелки, а в окрестностях Южного — по часовой стрелке.

Есть и другие основные направления, которые имеют отношение к эклиптике, а также к срединной линии Млечного Пути. Здесь они не рассматриваются.

2. Основные направления небесного меридиана.

Ось мира и отвесная линия задают плоскость небесного меридиана.

В этой плоскости расположены направления на полюса мира, зенит, надир, и, кроме того, выделяют ещё четыре направления: на север и юг, а также наивысшую и наинизшую точки небесного экватора.

Направления на север и юг перпендикулярны отвесной линии, при этом направление на север ближе (в угловой мере) к Северному полюсу мира, чем к Южному полюсу.

Направления на наивысшую и наинизшую точку небесного экватора перпендикулярны оси мира, при этом направление на наивысшую точку экватора ближе (в угловой мере) к зениту, чем к надиру.

3. Горизонтальная система координат.

Любое произвольное направление задаём кватернионом:

q = sinθ′ · cosφ′ · i + sinθ′ · sinφ′ · j + cosθ′ · k,

Теперь определимся с направлениями i, j, k, составляющими правую тройку.

Пусть k = kг — направление на зенит, тогда θ′ — угол между направлениями на зенит и на светило, иначе говоря, это зенитное расстояние светила. Астрономы обозначают его буквой z.

Итак θ′ = z.

Отсюда z = 0° — направление на зенит,

z = 180° — направление на надир.

Множество направлений, удовлетворяющих условию z = 90° задаёт плоскость математического горизонта.

Во всех остальных случаях условие z = const задаёт тот или иной альмукантарAт.

Наконец, вместо зенитного расстояния, z, нередко применяется высота светила, h, которая удовлетворяет условию

h + z = 90°,

таким образом, высота отсчитывается не от Северного полюса мира, а от математического горизонта.

В частности, для математического горизонта h = 0°.

Если h>0°, то светило находится над математическим горизонтом, h < 0°, наоборот, под горизонтом.

Примем, что i = iг задаёт направление на юг. Тогда при z = 90° и φ′ = 0°, φ′ = 90°, φ′ = 180°, φ′ = 270° получим направления на юг, на восток, на север и на запад соответственно, лежащие в плоскости математического горизонта.

Однако, в астрономии принято обратное направление возрастания величины углов в плоскости математического горизонта, а именно, углы возрастают от точки юга по направлению движения небесной сферы, т.е. к западу.

Поэтому следует положить φ′ = – А; угол А называется азимутом.

Тогда направление на светило в горизонтальной системе координат будет задаваться кватернионом:

q = sinz · cosA · iг – sinz · sinA · jг + cosz · kг.

Плоскость небесного меридиана содержит все направления, удовлетворяющие условиям А = 0° и А = 180°.

Множество направлений, удовлетворяющих условию А = const, называется вертикалом или кругом высоты.

Плоскость первого вертикала содержит все направления, удовлетворяющие условиям А = 90° и А = 270°.

4. Первая экваториальная система координат.

Она вводится аналогично горизонтальной системе координат.

Снова определимся с направлениями i, j, k, составляющими правую тройку.

Пусть k = kэ — направление на Северный полюс мира, тогда θ′ — угол между направлениями на Северный полюс мира и на светило, иначе говоря, это полярное расстояние светила.

Астрономы редко пользуются полярным расстоянием, вместо него они предпочитают склонение δ, которое аналогично высоте h в горизонтальной системе координат:

δ + θ′ = 90°.

Множество направлений, удовлетворяющих условию θ′ = 90° или δ = 0°, задаёт плоскость небесного экватора. Теперь понятно, что склонение, — это угол, отсчитываемый от небесного экватора, и, следовательно, является аналогом географической широты.

Поэтому δ = +90° — направление на Северный полюс мира,

δ = –90° — направление на Южный полюс мира.

Во всех остальных случаях условие δ = const задаёт небесные параллели.

Условие δ>0°, означает, что светило находится в Северном полушарии неба, а условие δ < 0°, наоборот, — в Южном полушарии неба.

Примем, что i = iэ задаёт направление на наивысшую точку экватора. Тогда при δ = 0° и φ′ = 0°, φ′ = 90°, φ′ = 180°, φ′ = 270° получим направления на наивысшую точку экватора, на восток, на наинизшую точку экватора и на запад соответственно, лежащие в плоскости небесного экватора.

Однако, в астрономии принято обратное направление возрастания величины углов в плоскости небесного экватора, а именно, углы возрастают от точки наивысшей точки экватора по направлению движения небесной сферы, т.е. к западу.

Поэтому следует положить φ′ = – t. Угол t называют часовым углом.

Тогда направление на светило в первой экваториальной системе координат будет задаваться, после замен θ′ = 90° – δ и φ′ = – t кватернионом:

q = cosδ· cost · iэ– cosδ· sint · jэ+ sinδ· kэ.

Плоскость небесного меридиана содержит все направления, удовлетворяющие условиям t = 0° и t = 180° или что, то же самое, t = 0h и t = 12h (часовой угол традиционно измеряется в часовой мере, 12h — 12 часов).

Плоскость первого вертикала содержит все направления, удовлетворяющие условиям t = 6h и t = 18h .

Наконец, множество направлений, удовлетворяющих условию t = const, называется кругом склонений.

5. Высота Северного полюса мира над горизонтом численно равна географической широте.

Ось Земли и ось мира параллельны (или совпадают, если наблюдатель находится на полюсе Земли).

Почему?

Из классической механики известно, что:

1. Вращение характеризуются вектором угловой скорости. Длина этого вектора задаёт угловую скорость вращения, а его направление — ось вращения.

2. Все точки абсолютно твёрдого тела вращаются с одинаковой угловой скоростью, а точнее, вектор угловой скорости одинаков для любой точки абсолютно твёрдого тела. Поэтому оси, вокруг которых вращаются все точки тела, параллельны (или, в частных случаях, совпадают).

Как известно, вращающуюся вокруг своей оси Землю можно считать абсолютно твёрдым телом, поскольку она практически не деформируется в результате осевого вращения. Поэтому все точки поверхности Земли вращаются вокруг параллельных или, в частном случае, вокруг совпадающих осей.

Итак, ось Земли и ось мира параллельны.

На рисунке изображены высота полюса Северного мира над горизонтом, hсп, и географическая широта, φ, согласно их определениям.

Из рисунка следует, что высота полюса мира над горизонтом численно равна географической широте наблюдателя.

hсп = φ ,

как углы с взаимно перпендикулярными сторонами: отвесная линия перпендикулярна горизонту, а ось мира перпендикулярна земному экватору.

6. Связь между горизонтальной и первой экваториальной системой координат.

Посмотрите на рисунок, где плоскость небесного меридиана показана со стороны востока.

Если ось мира повернуть вокруг оси j, направленной из центра, т.е. от наблюдателя, в сторону востока, в положительном направлении на угол 90° – hсп = 90° – φ, то она совпадёт с отвесной линией. При этом направление из центра, т.е. от наблюдателя, к востоку не изменится.

На языке кватернионов это можно записать так:

kг = (cosα + jэ · sinα) · k э · (cosα – jэ · sinα),

jг = jэ,

Очевидно, что направление iэ тоже должно преобразовываться аналогично:

iг = (cosα + jэ · sinα) · iэ · (cosα – jэ · sinα),

здесь буквой α обозначена половина угла поворота, α = (90° – φ)/2, чтобы короче записывать формулы.

Выполним необходимые вычисления:

iг = (cosα + jэ · sinα) · iэ · (cosα – jэ · sinα) =

cos2α· i э + sinα · cosα · jэ · iэ – cosα · sinα · iэ · jэ – sin2α · jэ · iэ · jэ =

cos2α · iэ – sin2α · kэ = sinφ · iэ – cosφ · kэ

т.к. jэ · iэ = – iэ · jэ = – kэ, jэ · iэ · jэ = – jэ2 · iэ = iэ .

Аналогично

kг = cosφ · iэ + sinφ · kэ.

Выполним подстановки, и группируя подобные слагаемые, получаем:

q = sinz · cosA · iг – sinz · sinA · jг + cosz · kг =

sinz · cosA · (sinφ · iэ – cosφ · kэ) – sinz · sinA · jэ + cosz· (cosφ · iэ + sinφ · kэ) =

(cosz · cosφ + sinz · sinφ · cosA) · iэ – sinz · sinA · jэ · (cosz · sinφ – sinz · cosφ · cosA) · kэ

С другой стороны

q = cosδ · cost · iэ – cosδ · sint jэ + sinδ · kэ.

В результате получаем формулы перехода от горизонтальной системы небесных координат к первой экваториальной системе:

cosδ· cost = cosz · cosφ+ sinz · sinφ· cosA,

cosδ· sint = sinz · sinA,

sinδ= cosz · sinφ– sinz · cosφ· cosA.

Теперь обратим эти равенства, но сначала обратим равенство

kг = (cosα + jэ · sinα) · kэ · (cosα – jэ · sinα) = QkэQ*,

здесь

Q = (cosα + jэ · sinα) = (cosα + jг · sinα), т.к. jэ = j г.

Умножим обе части равенства на сопряжённые кватернионы:

Q*kгQ = Q*QkэQ*Q = kэ.

Отсюда

kэ = (cosα – jг · sinα) · kг · (cosα + jг · sinα).

jэ = jг ,

iэ = (cosα – jг · sinα) · iг · (cosα + jг · sinα).

Здесь последнее равенство получено аналогично первому.

И далее, выполняя вычисления, аналогичные приведённым выше, получим формулы перехода от первой экваториальной системы небесных координат к горизонтальной системе:

sinz · cosA = – sinδ· cosφ+ cosδ· sinφ· cost,

sinz · sinA = cosδ· sint,

cosz = sinφ· sinδ+ cosφ· cosδ· cost.

Их рассмотренных примеров понятно, что можно не вводить понятие небесной сферы, а все задачи сферической астрономии решать с привлечением кватернионов.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита19:25:51 05 ноября 2021
.
.19:25:49 05 ноября 2021
.
.19:25:47 05 ноября 2021
.
.19:25:45 05 ноября 2021
.
.19:25:41 05 ноября 2021

Смотреть все комментарии (12)
Работы, похожие на Реферат: Сферическая астрономия и кватернионы

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(294399)
Комментарии (4230)
Copyright © 2005 - 2024 BestReferat.ru / реклама на сайте