Содержание
ТЕМА 1. Выборка и генеральная совокупность
Задача 1
ТЕМА 2. Модель парной регрессии
Задача 12
ТЕМА 3. Модель множественной регрессии
Задача 13
ТЕМА 4. Нестационарные временные ряды
Задача 23
ТЕМА 1. Выборка и генеральная совокупность
Задача 1
1. Найдите среднее число государственных вузов в России, если данные их статистического учета с 1994 по 2000г таковы
Год |
1994 |
1995 |
1996 |
1997 |
1998 |
1999 |
2000 |
Число государственных вузов |
548 |
553 |
569 |
573 |
578 |
582 |
584 |
2. Найдите вариацию числа государственных вузов в России за 1994 2000гг
Решение
Определим выборочное среднее государственных вузов в России, по зависимости учитывая, что n =7.
Найдем вариацию числа государственных вузов в России за 1994-2000г по формуле:
Таким образом, среднее число государственных вузов в России составляет 570 шт, а вариация 169.
ТЕМА 2. Модель парной регрессии
Задача 12
1. Предварительно вычисленная ковариация двух рядов составляет -4.32, а вариация ряда занятых в экономике равна 7,24. Средние выборочные равняются 68,5 и 5,87 соответственно. Оцените параметры линейного уравнения парной регрессии .
Решение
Оценим параметры линейного уравнения парной регрессии
Зная выборочные ковариацию и вариацию, вычислим параметр b по формуле (4)
а параметр a по зависимости
На основании полученных данных уравнение парной регрессии примет вид
Определим объясненную сумму квадратов отклонений ESS по формуле (8)
ТЕМА 3. Модель множественной регрессии
Задача 13
1. В таблице представлены ряды данных по продовольственным ресурсам (производству и импорту ) и личному потреблению картофеля y (млн. тонн) за 9 лет
Год |
1990 |
1991 |
1992 |
1993 |
1994 |
1995 |
1996 |
1997 |
1998 |
|
30.8 |
34.3 |
38.3 |
37.7 |
33.8 |
39.9 |
38.7 |
37 |
31.4 |
|
1.1 |
1.2 |
0.4 |
0.2 |
0.1 |
0.1 |
0.1 |
0.2 |
0.33 |
y |
15.7 |
16.7 |
17.5 |
18.8 |
18 |
18.3 |
18.5 |
19.1 |
18 |
Рассчитать вариации и попарные ковариации для этих рядов.
2. По данным таблицы построить уравнение регрессии, приняв личное потребление картофеля за зависимую переменную, а производство и импорт - за объясняющие. Рассчитать коэффициенты при объясняющих переменных.
3. Для регрессии, описывающей линейную зависимость потребления картофеля от производства и импорта , определить свободный коэффициент a .
4. Рассчитать значения личного потребления y картофеля, используя полученное в задаче уравнение регрессии.
5. Рассчитать общую, объясненную и необъясненную сумму квадратов отклонений для рассчитанной ранее регрессии для личного потребления y картофеля.
6. Используя полученные в предыдущем пункте TSS и ESS , рассчитать коэффициент детерминации для регрессии по картофелю.
Решение
Определим выборочные средние , и по формуле (1) при числе наблюдений: n =9
млн. т
млн. т
млн. т
Рассчитаем вариации и попарные ковариации для этих рядов. Вариации для рядов объясняющих переменных и можно вычислить по зависимостям (11)
А вариацию зависимой переменной y по зависимости (12)
Попарные ковариации для этих рядов определяются по (13) как
По данным таблицы построим уравнение регрессии
,
Приняв личное потребление фруктов за зависимую переменную, а производство и импорт - за объясняющие, предварительно рассчитав коэффициенты при объясняющих переменных.
Расчет коэффициентов и производим по зависимостям (15) и (16)
Для регрессии, описывающей линейную зависимость потребления фруктов от производства и импорта , определить свободный коэффициент a .
Свободный коэффициент уравнения регрессии вычисляется как
млн. т
Рассчитаем значения личного потребления y фруктов, используя полученное в задаче уравнение регрессии.
Расчет значений по зависимости
сведен в табл.2.
Таблица 2
Год |
1990 |
1991 |
1992 |
1993 |
1994 |
1995 |
1996 |
1997 |
1998 |
|
16.16 |
16,21 |
18,04 |
18,38 |
18,31 |
18,73 |
18,65 |
18,33 |
17,68 |
- |
-1,68 |
-1,63 |
0,56 |
0,54 |
0,47 |
0,89 |
0,81 |
0,49 |
-0,16 |
(-) 2
|
2,82 |
2,66 |
0,3 |
0,3 |
0,2 |
0,8 |
0,7 |
0,24 |
0,03 |
y i
|
15,7 |
16,7 |
17,5 |
18,8 |
18 |
18,3 |
18,5 |
19,1 |
18 |
(y i
- ) |
-2,14 |
-1,14 |
-0,34 |
0,96 |
0,16 |
0,46 |
0,67 |
1,26 |
0,16 |
(y i
- ) 2
|
4,58 |
1,3 |
0,12 |
0,92 |
0,03 |
0,21 |
0,45 |
1,59 |
0,03 |
Рассчитаем общую и объясненную сумму квадратов отклонений для рассчитанной ранее регрессии для личного потребления y фруктов.
Определим объясненную сумму квадратов отклонений ESS по формуле (8)
с помощью результатов, приведенных в табл.2. Тогда получим
Общая сумма квадратов отклонений Т SS находится по зависимости (9)
с использованием данных табл.2. Суммируя результаты, приведенные в последней строке этой таблицы, получим
Используя полученные в предыдущем пункте величины TSS и ESS , рассчитаем коэффициент детерминации для регрессии по фруктам в соответствии с (7) как отношение ESS к TSS
Оценим теперь коэффициент корреляции для фактических y и прогнозных значений . Фактически, коэффициент детерминации равен квадрату выборочной корреляции между y и , т.е.
В соответствии с зависимостью (20) имеем
,
Вывод: Полученная величина коэффициента корреляции лежит в диапазоне 0,7-0,9, что указывает на хорошее состояние соответствия уравнения регрессии фактическому изменению величины у.
ТЕМА 4. Нестационарные временные ряды
Задача 23
По данным таблицы в задаче 18, где представлены данные по личным потребительским расходам на газ (млн. долл.) с 1969 по 1983гг. (США), с помощью критерия, основанного на критерии восходящих и нисходящих серий, проверить гипотезу о неизменности среднего значения временного ряда.
1. В таблице представлены данные по личным потребительским расходам на газ (млн. долл.) с 1969 по 1983гг. (США)
Год |
1969 |
1970 |
1971 |
1972 |
1973 |
1974 |
1975 |
1976 |
расходы |
6200 |
6300 |
6400 |
6600 |
6400 |
6500 |
6600 |
6700 |
Год |
1977 |
1978 |
1979 |
1980 |
1981 |
1982 |
1983 |
расходы |
6500 |
6700 |
6600 |
6600 |
6300 |
6400 |
6000 |
Решение
Определяем число наблюдений n =15. Для нахождения медианы производим ранжирование временного ряда, т.е. записываем все значения ряда по порядку от минимального до максимального:
6000,6200,6300,6300,6400,6400,6400,6500,6500,6600,6600,6600,6600,6700,6700.
Поскольку число наблюдений n нечетное, то вычисляем медиану по формуле ( )
Теперь вместо исходного временного ряда, содержащегося в таблице, создаем ряд из плюсов и минусов согласно правилу:
«+» если и «-» если . Члены не учитываются
Ряд, состоящий из плюсов и минусов, имеет вид
« +
», «+»,«+», «+»,«+»,«+»,«+»,«+»,«+»,«+»,«+»,«+», «+».
Глядя на полученный ряд из плюсов и минусов, определяем общее число непрерывных серий из плюсов и из минусов . В данном случае . Определяем протяженность самой длинной серии .
Проверяем выполнение неравенств
Вывод. Поскольку ни одно из неравенств не выполняется (4<5, а 6>4), то гипотеза о неизменности среднего значения отвергается с вероятностью ошибки от 0,05 до 0,0975.
Список литературы
1. Эконометрика. Юниты 1,2,3. //Разработка С.Б.Давыдовой. -М.:Современная гуманитарная академия. -2006.
2. Магнус Я.Р., Катышев П.К., Пересецкий А.А. Эконометрика. Начальный курс. М.: Дело. 2001.- 400с.
3. Афанасьев В.Н., Юзданцев М.М., Гуляева Т.Н. Эконометрика. Учебник. – М.: Финансы и статистика., 2006.
4. Елисеева Н.Н., Кудряшова С.В., Костеева Т.В. . Эконометрика. Учебник. М.: Финансы и статистика., 2005.-576с.
5. Бородин С.А. Эконометрика: учебное пособие. – М.: Новое издание, 2001.
6. Колемаев В.А. Эконометрика. Учебник. – М.: ИНФРА – М, 2005 -160с.
|