Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Дипломная работа: Неметаллические материалы

Название: Неметаллические материалы
Раздел: Биология и химия
Тип: дипломная работа Добавлен 03:53:58 26 апреля 2005 Похожие работы
Просмотров: 10572 Комментариев: 31 Оценило: 20 человек Средний балл: 4.8 Оценка: 5     Скачать

Нижнекамский Химико-Технологический Институт

2005 г.

1. Общие сведения о неметаллических материалах

Понятие неметаллические материалы включает большой ассортимент материалов таких, как пластические массы, композиционные материалы, резиновые материалы, клеи, лакокрасочные покрытия, древесина, а также силикатные стекла, керамика и др.

Неметаллические материалы являются не только заменителями металлов, но и применяются как самостоятельные, иногда даже незаменимые материалы. Отдельные материалы обладают высокой механической прочностью, легкостью, термической и химической стойкостью, высокими электроизоляционными характеристиками, оптической прозрачностью и т. п. Особо следует отметить технологичность неметаллических материалов.

Применение неметаллических материалов обеспечивает значительную экономическую эффективность.

Основой неметаллических материалов являются полимеры, главным образом синтетические. Создателем структурной теории химического строения органических соединений является великий русский химик А. М. Бутлеров. Промышленное производство первых синтетических пластмасс (фенопластов) явилось результатом глубоких исследований, проведенных Г. С. Петровым (1907—'1914 гг.). Блестящие исследования позволили С. В. Лебедеву впервые в мире осуществить промышленный синтез каучука (1932 г.). Н. Н. Семеновым разработана теория цепных реакций (1930—1940 гг.) и распространена на механизм цепной полимеризации.

Успешное развитие химии и физики полимеров связано с именами видных ученых: П. П.. Кобеко, В. А. Каргина, А. П. Александрова, С. С. Медведева, С. Н. Ушакова, В. В. Коршака и др. Важный вклад внесен К. А. Андриановым в развитие химии кремнийорганических полимеров, широко применяемых в качестве термостойких материалов.

1.1. Понятие о неметаллических материалах и классификация полимеров

Полимерами называют вещества, макромолекулы которых состоят из многочисленных элементарных звеньев (мономеров) одинаковой структуры. Молекулярная масса их составляет от 5000 до 1000 000. При таких больших размерах макромолекул свойства веществ определяются не только химическими составами этих молекул, но и их взаимным расположением и строением.

Макромолекулы полимера представляют собой цепочки, состоящие из отдельных звеньев. Поперечное сечение цепи несколько ангстрем, а длина несколько тысяч ангстрем, поэтому макромолекулам полимера свойственна гибкость (которая ограничена размером сегментов — жестких участков, состоящих из нескольких звеньев). Гибкость макромолекул является одной из отличительных особенностей полимеров.

Атомы, входящие в основную цепь, связаны прочной химической (ковалентной) связью. Энергия химических связей (в ккал/моль) составляет вдоль цепи 80 для С — С, 79 для С — О, 66 для С — N. Силы межмолекулярного взаимодействия, имеющие обычно физическую природу, значительно (в 10 — 50 раз) меньше. Например, прочность межмолекулярных связей электростатического характера не превышает 9 ккал/моль. Однако в реальных полимерах такие суммарные силы имеют значение вследствие большой протяженности цепевидных макромолекул. Наиболее сильные межмолекулярные взаимодействия осуществляются посредством водородных связей (только в 4—10 раз слабее ковалентных). Таким образом, молекулы полимеров характеризуются прочными связями в самих макромолекулах и относительно слабыми между ними. В некоторых полимерах между звеньями, входящими в состав соседних макромолекул, действуют силы химической связи. Такие вещества характеризуются высокими свойствами во всех направлениях.

Макромолекулы полимеров, имея одинаковый химический состав, обычно отличаются по размерам. Это явление, вызывающее рассеяние физико-механических характеристик материала, называется полидисперсностью.

Макромолекулы могут быть построены из одинаковых по химическому строению мономеров или разнородных звеньев. В первом случае соединения называются гомоиолимерами (или полимерами), во втором — сополимерами. Иногда макромолекула вещества состоит из чередующихся крупных химически однородных отрезков (блоков) разного состава (блок-сополимеры).

Можно в процессе синтеза к главной молекулярной цепи, состоящей из одних мономеров, «привить» отрезки из других мономеров, тогда получают так называемые привитые сополимеры.

Когда основная цепь построена из одинаковых атомов, полимер называют гомоцепным, из разных гетероцепным. Большое значение имеет стереорегулярность полимера, когда все звенья и заместители расположены в пространстве в определенном порядке. Это придает материалу повышенные физико-Механические свойства (по сравнению с нерегулярными полимерами).

Полимеры встречаются в природе — натуральный каучук, целлюлоза, слюда, асбест, природный графит. Однако ведущей группой являются синтетические полимеры, получаемые в процессе химического синтеза из низкомолекулярных соединений. Возможности создания, новых полимеров и изменения свойств уже существующих очень велики. Синтезом можно получать полимеры с разнообразными свойствами и даже создавать материалы с заранее заданными характеристиками.

Классификация полимеров. Для удобства изучения связи состава, структуры со свойствами полимеров их можно классифицировать по различным признакам (составу, форме макромолекул, фазовому состоянию, полярности, отношению к нагреву). По составу все полимеры подразделяют на органические, элементоорганические, неорганические.

Органические полимеры составляют наиболее обширную группу соединений. Если основная молекулярная цепь таких соединений образована только углеродными атомами, то они называются карбоцепными полимерами. Углеродные атомы соединены с атомами- водорода или органическими радикалами.

В гетероцепных полимерах атомы других элементов, присутствующие в основной цепи, кроме углерода, существенно изменяют свойства полимера. Так, в макромолекулах атомы кислорода способствуют повышению гибкости цепи, что приводит к увеличению эластичности полимеров (например, для волокон, пленок), атомы фосфора и ,хлора повышают огнестойкость, атомы серы придают газонепроницаемость (для герметиков, резин), атомы фтора, даже в виде радикалов, сообщают полимеру высокую химическую стойкость и т. д.

Некоторые карбоцепные и гетероцепные полимеры могут иметь сопряженную систему связей, например:

...сн = сн - сн = сн - сн = сн ...

Энергия сопряженной связи 100 — 110 ккал/моль выше одинарной, .поэтому такие полимеры более устойчивы при нагреве.

Органическими полимерами являются смолы и каучуки. Элементоорганические соединения содержат в составе, основной цепи неорганические атомы кремния, титана, алюминия и других элементов, которые сочетаются с органическими радикалами (метальный, фенильный, этильный). Органические радикалы придают материалу прочность и эластичность, а неорганические атомы сообщают повышенную теплостойкость. В природе таких соединений не встречается. Представителями этой группы являются кремнийорганические соединения, разработанные советским ученым К.. А. Андриановым. Строение этих соединений в основном имеет вид

RR

I I

• Si—О — Si— •

I I

R R

Между атомами кремния и кислорода существует прочная химическая связь; энергия силоксановой связи Si — О равна 89,3 ккал/моль. Отсюда и более высокая теплостойкость кремнийорганических смол, каучуков, хотя их упругость и эластичность меньше, чем у органических. Полимеры, содержащие в основной цепи титан и кислород, называются полититаноксанами.

К неорганическим полимерам относятся силикатные стекла, керамика, слюда, асбест. В составе- этих соединений углеродного скелета нет. Основу неорганических материалов составляют окислы кремния, алюминия, магния, кальция и др.

В силикатах существуют два типа связей: атомы в цепи соединены ковалентными связями (Si - О), а цепи между собой - ионными связями. Свойства этих веществ можно изменять в широких пределах, получая, например, из минерального стекла волокна и эластичные пленки. Неорганические полимеры отличаются более высокой плотностью, высокой длительной теплостойкостью. Однако стекла и керамика хрупкие, плохо переносят динамические нагрузки. К неорганическим полимерам относится также графит, представляющий собой карбоцепной полимер.

В конкретных технических материалах используются как отдельные виды полимеров, так и сочетание различных групп полимеров; такие материалы называют композиционными (например, стеклопластики).

Своеобразие свойств полимеров обусловлено структурой их макромолекул. По форме макромолекул полимеры делятся на линейные (цеповидные), разветвленные, плоские, ленточные (лестничные), пространственные или сетчатые. Линейные макромолекулы полимера представляют собой длинные зигзагообразные или закрученные в спираль цепочки (рис. 1 а).

Гибкие макромолекулы с высокой прочностью вдоль цепи и слабыми межмолекулярными связями обеспечивают эластичность материала, способность его размягчаться при нагревании, а при охлаждении вновь затвердевать. Многие такие полимеры растворяются в растворителях. На физико-механические и химические свойства линейного полимера влияет плотность упаковки молекул в единице объема. При плотной упаковке возникает более сильное межмолекулярное притяжение, что приводит к повышению плотности, прочности, температуры размягчения и уменьшению растворимости.

Рис.1а

рис1 г.д

Линейные полимеры являются наиболее подходящими для получения волокон и пленок (например, полиэтилен, полиамиды и др.).

Разветвленные макромолекулы полимера, являясь также линейными отличаются наличием боковых ответвлений. Эти ответвления препятствуют сближению макромолекул, их плотной упаковке. Подобная форма макромолекул предопределяет пониженное межмолекулярноё взаимодействие и, следовательно, меньшую прочность и повышенную плавкость и растворимость (полиизобутилен). К разветвленным относятся и при витые полимеры, в которых состав основной цепи и редко расположенных боковых ответвлений неодинаков.

Пространственные или сетчатые полимеры образуются при соединении («сшивке») макромолекул между собой в поперечном направлении прочными химическими связями непосредственно или через химические элементы или радикалы. В результате такого соединения макромолекул образуется сетчатая структура с различной густотой сетки (рис. 1 г). Редкосетчатые (сетчатые) полимеры теряют способность растворяться и плавиться, они обладают упругостью (например, мягкие резины). Густосетчатые (пространственные) полимеры отличаются твердостью, повышенной теплостойкостью, нерастворимостью. Иногда образование пространственной структуры сопровождается даже возникновением хрупкости (смола в стадии резит). Пространственные полимеры лежат в основе конструкционных неметаллических материалов. К сетчатым полимерам относятся также пластинчатые полимеры, которые имеют плоскостное двухмерное строение. Примером такого полимера является графит. Пластинчатая (паркетная) структура показана на рис. 1, д.

По фазовому состоянию полимеры подразделяют на аморфные и кристаллические.

В результате рентгенографического и электронно-микроскопических исследований, проведенных В. А. Каргиным, А. И. Китайгородским и Г. Л. Слонимским, макромолекулы в полимерах, как правило, расположены не хаотично, а имеют упорядоченное взаимное расположение. Структуры, возникающие в результате различной укладки молекул, называют надмолекулярными. Упорядоченность в структурообразовании определяется гибкостью линейных и разветвленных (с короткими ответвлениями) макромолекул, способностью их менять форму, перемещаться по частям; большое влияние оказывают жесткость цепи и силы межмолекулярного притяжения.

Аморфные полимеры однофазны и построены из цепных молекул, собранных в пачки. Пачка состоит из многих рядов макромолекул, расположенных последовательно друг за другом. Пачки способны перемещатьсяотносительно соседних элементов, так как они являются структурными- элементами.

Аморфные полимеры могут, быть также построены из свернутых в клубки цепей, так называемых глобул. Глобулярная структура полимеров дает невысокие механические свойства (хрупкое разрушение по грани-дам глобул). При повышенных температурах глобула разворачивается в линейные образования, способствующие повышению механических свойств полимеров.

Вопрос о надмолекулярных структурах некристаллизующихся полимеров мало разработан. Структуры в этих полимерах являются флуктуационными, термодинамический нестабильными и характеризуются относительно небольшим временем жизни.

Кристаллические полимеры образуются в том случае, если их макромолекулы достаточно гибкие и имеют регулярную структуру. Тогда при соответствующих условиях возможны фазовый переход внутри пачки и образование пространственных решеток кристаллов.

Гибкие пачки складываются в ленты путем многократного поворота пачек на 180°С. Затем ленты, соединяясь друг с другом своими плоскими сторонами, образуют пластины (рис. 186, а). Эти пластины наслаиваются, в результате чего получаются правильные кристаллы.

В том случае, когда образование из более мелких структурных элементов правильных объемных кристаллов затруднено, возникают сферолиты. 'Сферолиты состоят из лучей, образованных чередованием кристаллических и аморфных участков. В процессе ориентации гибкоцепных полимеров получаются фибриллярные структуры, состоящие из микрофибрилл (рис. 186, е). Между кристаллитами находятся аморфные участки [1]. Кристаллические структуры являются дискретными, организованными, термодинамический стабильными. В отсутствии внешних силовых полей их время жизни т->со. Кристаллизующимися полимерами являются полиэтилен, полипропилен, полиамиды и др. Кристаллизация осуществляется в определенном интервале температур. В обычных условиях полной кристаллизации не происходит. В связи с этим в реальных полимерах структура обычно двухфазная: наряду с кристаллической фазой имеется и аморфная. Кристалличность придает полимеру повышенную . теплостойкость, большую жесткость и прочность. Через надмолекулярную структуру передаются механические и физические свойства полимеров. При переработке, а также в условиях длительного хранения и эксплуатации надмолекулярные структуры могут самопроизвольно или вынужденно претерпевать изменения.

По полярности полимеры подразделяют на полярные и неполярные. У неполярной молекулы электронное облако, скрепляющее атомы, распределено между ними в одинаковой мере; у таких молекул центры тяжести разноименных зарядов совпадают. У полярной молекулы общее электронное облако сдвинуто в сторону более электроотрицательного атома; центры тяжести разноименных зарядов не совпадают. Полярность вещества оценивается дипольным моментом и., равным произведению элементарного заряда (заряд электрона) q на расстояние / между центрами тяжести всех положительных и всех отрицательных зарядов. Таким образом, (.i = q-l. Заряд электрона q = 4,8-10 -10 эл.-ст. единиц; расстояние l порядка 10 -18 см (1 А). Значения дипольного момента имеют порядок 10 -18 эл.-ст. единиц-см. Эту величину иногда называют единицей Дебая (Д). Например, для связей С - Н, С - N, С - О, С - F, С - С1 m равно соответственно 0,2; 0,4'; 0,9; 1,83; 2,05Д.

Первым условием полярности полимеров является присутствие в них полярных связей (группировок - С1,— F,- ОН), вторым - несимметрия в их структуре. Неполярные полимеры имеют симметричное расположение функциональных групп, и поэтому дипольные моменты связей атомов взаимно компенсируются, например:

1) неполярные:

полиэтилен [ - СН2 - СН2 — ]„ - молекула симметрична;

полипропилен [ — СН2 — СНСН3 — ]„ — дипольные моменты С — Н и С —

— СН3 равны;

фторопласт-4 [ - CF2 - CF2 — ]„ - дипольный момент связи С - F значителен, сумма моментов равна нулю, так как они компенсируют друг .друга.

2) полярные:

поливинилхлорид [ - СН2 - СНС1 - ]„ - молекула несимметрична, дипольные моменты С —Н(0,2Д) и С — О (2,05 Д) взаимно не компенсируются.

Полярность сильно влияет на свойства полимеров. Так; неполярные полимеры (в основном на основе углеводородов) являются высококачественными высокочастотными диэлектриками. Физико-механические свойства, а у неполярных полимеров при низких температурах ухудшаются незначительно, такие материалы обладают хорошей морозостойкостью (например, полиэтилен не охрупчивается до температуры — 70°С). Полярность, увеличивая силы межмолекулярного притяжения, придает полимеру жесткость, теплостойкость. Однако диэлектрики на основе полярных полимеров могут работать без потерь только в ограниченной области частот (являются низкочастотными). Кроме того, полярные полимеры характеризуются низкой морозостойкостью (например, полихлорвинил до температуры -10- -20°С).

Все полимеры по отношению к нагреву подразделяют на термопластичные и .термореактивные.

Термопластичные полимеры при нагревании размягчаются, даже плавятся, при охлаждении затвердевают; этот процесс обратим, т. е. никаких дальнейших химических превращений материал не претерпевает. Структура макромолекул таких полимеров линейная или разветвленная. Представителями термопластов являются полиэтилен, полистирол, полиамиды и др.

Термореактивные полимеры на первой стадии образования имеют линейную структуру и при нагревании размягчаются, затем вследствие протекания химических реакций затвердевают (образуется пространственная структура) и в дальнейшем остаются твердыми. Отвержденное состояние полимера называется термостабильным. Примером термореактивных смол могут служить фенолоформальдегидная, глифталевая и другие смолы.

1.2. Особенности свойств полимерных материалов

Особенности строения полимеров оказывают большое влияние на их физико-механические и химические свойства. Вследствие высокой молекулярной массы они не способны переходить в газообразное состояние, при нагревании образовывать низковязкие жидкости, а некоторые, обладающие термостабильной пространственной структурой, даже размягчаться. С повышением молекулярной массы уменьшается растворимость. При молекулярной массе (300 —400)*103 и низкой полярности полимеры растворимы в растворителях, процесс протекает медленно: через стадию набухания с образованием очень вязких растворов. Если молекулярная масса очень велика или присутствуют высокополярные группы, то полимер становится нерастворимым ни в одном из органических растворителей.

Полидисперсность, присущая полимерам, приводит к значительному разбросу показателей при определении физико-механических свойств полимерных материалов. Механические свойства полимеров (упругие, прочностные) зависят от их структуры, физического состояния, температуры и т. д. Полимеры могут находиться в трех физических состояниях: в стеклообразном, высокоэластическом и вязкотекучем.

Стеклообразное состояние — твердое, аморфное (атомы, входящие в состав молекулярной цепи, совершают колебательное движение около положения равновесия; движения звеньев и перемещения макромолекул не происходит).

Высокоэластическое состояние присуще только высокополимерам, характеризуется способностью материала к большим обратимым изменениям формы при небольших нагрузках (колеблются звенья, и макромолекула приобретает способность изгибаться).

Вязкотекучее состояние напоминает жидкое состояние, но отличается от него очень большой вязкостью (подвижна вся макромолекула). С изменением температуры линейный или разветвленный полимер может переходить из одного физического состояния в другое.

Полимеры с пространственной структурой находятся только в стеклообразном состоянии. Редкосетчатая структура позволяет получать полимеры в стеклообразном и высокоэластическом состояниях. Различные физические состояния полимера обнаруживаются при изменении его деформации с температурой. Графическая зависимость деформации, развивающейся за определенное время при заданном напряжении от температуры, называется термомеханической кривой.. Средние температуры переходных областей называются температурами перехода. Так, температура перехода из стеклообразного в высокоэластическое состояние (и обратно) называется температурой стеклования (tc ); температура перехода из высокоэластического состояния в вязкотекучем (и обратно) — температурой текучести (tт )-

Точка txp , лежащая ниже точки tc , является температурой хрупкости. При температуре ниже txp полимер становится хрупким, т. е. разрушается при очень малой величине деформации. Разрушение происходит в результате разрыва химических связей в макромолекуле (например, для полиметилметакрилата tc =100°C, txp =+10"C; для полистирола tс =100с С и txp = 9O°C; для поливинилхлорида tc = 81°C, txp = -90°С; для резины на основе натурального каучука tс = — 62°С, txp = — 80°С). С повышением температуры увеличивается энергия теплового движения молекул, и температура становится достаточной для проявления гибкости молекул. Небольшие напряжения вызывают перемещение отдельных сегментов макромолекул и их ориентацию в направлении действующей силы. После снятия нагрузки молекулы в результате действия межмолекулярных сил принимают первоначальную равновесную форму. Высокоэластическое состояние характеризуется значительными обратимыми деформациями (сотни процентов). В области, соответствующей этому состоянию, развиваются упругая и высокоэластическая деформации. Около точки tT кроме упругой и высокоэластической деформации возникает и пластическая.

Кристаллические полимеры ниже температуры плавления — кристаллизации tк - являются твердыми, но имеют различную жесткость вследствие наличия аморфной части, которая может находиться в различных состояниях. При tK кристаллическая часть плавится, и термомеханическая кривая почти скачкообразно, и соответствует высокоэластической деформации, как у некристаллического полимера.

Узлы сетки редкосетчатого полимера препятствуют относительному перемещению полимерных цепей. .В связи с этим при повышении температуры вязкого течения не наступает, расширяется высокоэластическая область и ее верхней границей становится tx (химическое разложение полимера).

Рассмотренные температурные переходы (tc и tт ) являются одними из основных характеристик полимеров и имеют большое значение. Например, при использовании волокон, пленок, лаков в промышленности, где необходима высокая прочность, лежащие в их основе полимеры должны находиться в стеклообразном состоянии. Резиновой промышленности необходимы высокоэластические полимеры, сохраняющие свои свойства в широком диапазоне температур. Процесс технологической переработки полимеров происходит в области вязкотекучего состояния.

Зависимость напряжения от деформации для линейных и сетчатых полимеров различна. Линейные полимеры в стеклообразном состоянии обладают некоторой подвижностью сегментов, поэтому полимеры не так хрупки, как неорганические вещества.

При действии больших напряжений в стеклообразных полимерах развиваются значительные деформации, которые по своей природе близки к высокоэластическим. Эти деформации были названы А. П. Александровым вынужденно-эластическими, а само явление — вынужденной эластичностью. Вынужденно-эластические деформации проявляются в интервале температур txp —tc , а при нагревании выше tc они обратимы, т. е. образец полностью восстанавливается до первоначального размера. Диаграмма растяжения стеклообразного полимера показана па рис.2.1. Область / является областью образования упругой деформации, а в области II происходит процесс высокоэластической деформации. Максимум на кривой соответствует условию dQ/dE = 0 и называется пределом вынужденной эластичности Qвын . Э л.- Ниже tхр полимер приобретает плотную структуру с прочными межмолекулярными связями, теряет все преимущества, обусловленные гибкостью цепей, и разрушается хрупко.

В интервале температур tc — tT , когда полимер находится в высокоэластическом состоянии, диаграмма напряжение — деформация имеет вид плавной S-образной кривой. Зависимость напряжения от деформации для аморфного термопласта (полиметилметакрилат, полистирол, поливинилхлорид и др.) при разных температурах и постоянной скорости растяжения дана на рис. 2.2.

2.1 2.2

Рис. 2.1. Диаграмма растяжения стеклообразного полимера

(Qвын.эл- предел вынужденной эластичности):

/ — область упругих деформаций;

Деформация

Деформация

//—область высокоэластической деформации

Рис. 2.2. Влияние температуры на характер кривых напряжение — деформация аморфного термопласта t1 < t2 < t3

Ориентационное упрочнение. Полимеры как в кристаллическом, так и в стеклообразном состоянии могут быть ориентированы. Процесс осуществляется при медленном растяжении полимеров, находящихся в высокоэластическом или вязкотекучем состоянии. Макромолекулы и элементы надмолекулярных структур ориентируются в силовом поле, приобретают упорядоченную структуру по сравнению с неориентированными. После того как достигнута желаемая степень ориентации, температура снижается ниже tс , и полученная структура фиксируется.

В процессе ориентации возрастает межмолекулярное взаимодействие, что приводит к повышению tc , снижению tхр и особенно к повышению механической прочности. Свойства материала получаются анизотропными. Различают одноосную ориентацию, применяемую для получения волокон, пленок, труб, и многоосную, производимую одновременно в нескольких направлениях (например, в процессе получения пленок).

Прочность при разрыве в направлении ориентации увеличивается в 2-5 раз, в перпендикулярном направлении прочность уменьшается и составляет 30-50% прочности исходного материала. Модуль упругости в направлении одноосной ориентации увеличивается примерно в 2 раза. Высокая прочность сочетается с достаточной упругостью, что характерно только для высокополимеров (звенья макромолекул могут обратимо перемещаться без разрушения материала).

Некоторые свойства ориентированных аморфных и кристаллических полимеров одинаковы, однако они различаются фазовым состоянием, поэтому с течением времени у кристаллических полимеров улучшается их структура, а аморфные ориентированные полимеры чаще всего в дальнейшем дезориентируются (особенно при нагреваний).

Релаксационные свойства полимеров. Механические свойства полимеров зависят от времени действия и скорости приложения нагрузок. Это обусловлено особенностями строения макромолекул. Под действием приложенных напряжений происходит как распрямление и раскручивание цепей (меняется их конформация), так и перемещение макромолекул, пачек и других надмолекулярных структур. Все это требует определенного времени,и установление равновесия (релаксация) достигается не сразу. Например, для полимера в высокоэластическом состоянии время релаксации при конформационных изменениях равно 10-4 - 10-6 с, а время релаксации при перемещении самих макромолекул и надмолекулярных структур очень велико и составляет сутки и месяцы. Примером может служить волокно, являющееся ориентированным полимером. В обычных условиях его молекулы очень долго не переходят в равновесное неориентированное состояние; поэтому такие процессы релаксации обычно не учитываются. Однако это волокно достаточно упруго, так как при растяжении и сокращении проявляются быстрые релаксационные процессы изменения конформаций. Кинетика релаксационного процесса выражается формулой :

∆X=(∆X)0 e-(τ / τ p )

где ∆х и (∆х)0 - отклонения измеряемой величины от равновесного значения в данный момент времени т и в начальный момент т = 0; т„ — время релаксации (для простых релаксирующих систем величина постоянная). При τ = τр величина ∆х = (∆х)0 /е (т. е. за время релаксации ∆х уменьшается в 2,72 раза). По величине τр обычно судят о скорости релаксационных процессов.

Для эластичных полимеров характерно явление гистерезиса. У этих материалов кривые зависимости деформации от напряжения при нагружении и разгрузке образца не совпадают (происходят релаксационные процессы). Релаксация деформации - это изменение относительного удлинения (или сжатия) образца при постоянном напряжении во времени. При приложении силы образец находится в неравновесном состоянии, и со временем начинается релаксация; через какое-то время деформация достигает равновесного значения (равновесие между а = const и тепловым движением). После снятия нагрузки образец начинает восстанавливать свою первоначальную форму (упругое последействие). Удлинение происходит в результате распрямления, раскручивания цепей (высокоэластической деформации) и перемещения макромолекул друг относительно друга (вязкого течения). Чем больше время испытания, тем больше вязкое течение. .Деформация в этом случае состоит из обратимой и необратимой. Эти медленно протекающие процессы изменения формы образца называют ползучестью.

Рис. 3. Влияние скорости (W) приложения нагрузки на характер кривых растяжения (W1 > W2 > W3 )

Деформация

Релаксацией напряжения называется уменьшение напряжения до равновесного значения при условии неизменности деформации. С течением времени величина приложенного первоначального напряжения будет постепенно уменьшаться, так как в образце под действием теплового движения начнется самопроизвольная конформационная перестройка, а в линейном полимере будет происходить перемещение макромолекул. Для сетчатых полимеров соотношение указанных процессов будет зависеть от частоты сетки.

Для всех полимеров характерно повышение предела прочности с увеличением скорости нагружения (рис. 3). При этом уменьшается влияние неупругих деформаций. С уменьшением скорости нагружения влияние неупругих деформаций возрастает.

С. Н. Журковым разработана флуктуационная теория прочности полимеров, согласно которой разрыв полимерного материала под действием внешних сил является процессом, протекающим в зависимости от времени. Скорость его определяется соотношением энергии межмолекулярных связей и тепловых флуктуации. Разрыв происходит вследствие тепловых флуктуации, а растягивающее напряжение способствует флуктуационному процессу. Разрыв всегда происходит по химическим связям. Любое упрочнение структуры полимера приводит к более согласованному сопротивлению линейных молекул их разрыву, поэтому, например, при ориентации прочность материала повышается. При деформации полимерные материалы так же, как и металлы, обладают статической и динамической выносливостью.

Следовательно, чем выше напряжение или температура, тем меньше Долговечность.

Температурно-временная зависимость прочности для полимерных материалов выражена сильнее, чем для металлов, и имеет большое значение при оценке их свойств.

Старение полимеров. Под старением полимерных материалов понимается самопроизвольное необратимое изменение важнейших технических характеристик, происходящее в результате сложных химических и физических процессов, развивающихся в материале при эксплуатации и хранении. Причинами старения являются свет, теплота, кислород, озон и другие немеханические факторы. Старение ускоряется при многократных деформациях; менее существенно на старение влияет, влага. Различают старение тепловое, световое, озонное и атмосферное.

Испытание на старение проводится как в естественных условиях, так и искусственными ускоренными методами. Атмосферное старение проводится в различных климатических условиях в течение нескольких лет. Тепловое старение происходит при температуре на 50°С ниже температуры плавления (разложения) полимера. Продолжительность испытания определяется временем, необходимым для снижения основных показателей на 50% от исходных.

Сущность старения заключается в сложной цепной реакции, протекающей с образованием свободных радикалов (реже ионов), которая сопровождается деструкцией и структурированием полимера. Обычно старение является результатом окисления полимера атмосферным кислородом. Если преобладает деструкция, то полимер размягчается, выделяются летучие вещества (например, натуральный каучук); при структурировании повышаются твердость, хрупкость, наблюдается потеря эластичности (бутадиеновый каучук, полистирол). При высоких температурах (200 — 500°С и выше) происходит термическое разложение органических полимеров, причем пиролиз полимеров, сопровождаемый испарением летучих веществ, не является поверхностным явлением (как при простом испарении неполимерных веществ); во всем объеме образца образуются молекулы, способные испаряться.

Пластические массы

Пластмассами (пластиками) называют искусственные материалы, получаемые на основе органических полимерных связующих веществ. Эти материалы способны при нагревании размягчаться, становиться пластичными, и тогда под давлением им можно придать заданную форму, которая затем сохраняется. В зависимости от природы связующего переход отформованной массы в твердое состояние совершается или при дальнейшем ее нагревании, или при последующем охлаждении.

I . Состав, классификация и свойства пластмасс

Обязательным компонентом пластмассы является связующее вещество. В качестве связующих для большинства пластмасс используются синтетические смолы, реже применяются эфиры целлюлозы. Многие пластмассы, главным образом термопластичные, состоят из одного связующего вещества, например полиэтилен, органические стекла и др.

Другим важным компонентом пластмасс является наполнитель (порошкообразные, волокнистые и другие вещества как органического, так и неорганического происхождения). После пропитки наполнителя связующим получают полуфабрикат, который спрессовывается в монолитную массу. Наполнители повышают механическую прочность, снижают усадку при. прессовании и. придают материалу те или иные специфические свойства (фрикционные, антифрикционные и т. д.). Для повышения пластичности в полуфабрикат добавляют пластификаторы (органические вещества с высокой температурой кипения и низкой температурой замерзания, например олеиновую кислоту, стеарин, дибутилфталат и др.). Пластификатор сообщает пластмассе эластичность, облегчает ее обработку. Наконец, исходная композиция может содержать отвердители (различные амины) или катализаторы (перекисные соединения) процесса отверждения термореактивных связующих, ингибиторы, предохраняющие полуфабрикаты от их самопроизвольного отверждения, а также красители (минеральные пигменты и спиртовые растворы органических красок, служащие для декоративных целей).

Свойства пластмасс зависят от состава отдельных компонентов, их сочетания и количественного соотношения, что позволяет изменять характеристики пластиков в достаточно широких пределах.

По характеру связующего вещества пластмассы подразделяют на термопластичные (термопласты), получаемые на основе термопластичных полимеров, и термореактивные (реактопласты) — на основе термореактивных смол. Термопласты удобны для переработки в изделия, дают незначительную усадку при формовании (1-3%). Материал отличается большой упругостью, малой хрупкостью и способностью к ориентации. Обычно термопласты изготовляют без наполнителя. В последние годы стали применять термопласты с наполнителями в виде минеральных и синтетических волокон (органопласты).

Термореактивные полимеры после отверждения и перехода связующего в термостабильное состояние (пространственная структура) хрупки, часто дают большую усадку (до 10—15%) при их переработке, поэтому в их состав вводят усиливающие наполнители.

По виду наполнителя пластмассы делят на порошковые (пресс-порошки) с наполнителями в виде древесной муки, сульфитной целлюлозы, графита, талька, измельченных стекла, мрамора, асбеста, слюды, пропитанных связующими (часто их называют карболитами); волокнистые с наполнителями в виде очесов хлопка и льна (волокниты), стеклянного волокна (стекловолокниты), асбеста (асбоволокниты); слоистые, содержащие листовые наполнители (листы бумаги в гетинаксе, хлопчатобумажные, стеклянные, асбестовые ткани в текстолите, стеклотекстолите и асботекстолите, древесный шпон в древеснослоистых пластиках); крошкообразные (наполнитель в виде кусочков ткани или древесного шпона, пропитанных связующим); газонаполненные (наполнитель - воздух или нейтральные газы). В зависимости от структуры последние подразделяют на пенопласты и поропласты.

Современные композиционные материалы содержат в качестве наполнителей угольные и графитовые волокна (карбоволокниты); волокна бора (бороволокниты).

По применению пластмассы можно подразделить на силовые (конструкционные, фрикционные и антифрикционные, электроизоляционные) и несидовые (оптически прозрачные, химически стойкие, электроизоляционные, теплоизоляционные, декоративные, уплотнительные, вспомогательные). Однако это деление условно, так как одна и та же пластмасса может обладать разными свойствами: например, полиамиды применяют в качестве антифрикционных и электроизоляционных материалов и т. д.

Пластмассы по своим физико-механическим и технологическим свойствам являются наиболее прогрессивными и часто незаменимыми материалами для машиностроения.

Недостатками пластмасс являются невысокая теплостойкость, низкие модуль упругости и ударная вязкость по сравнению с металлами и сплавами, а для некоторых пластмасс склонность к старению.

2. Термопластичные пластмассы

В основе термопластичных пластмасс лежат полимеры линейной или разветвленной структуры, иногда в состав полимеров вводят пластификаторы. Термопластичные пластмассы применяют в качестве прозрачных органических стекол, высоко- и низкочастотных диэлектриков, химически стойких материалов; из этих пластмасс изготовляют тонкие пленки и волокна. Детали, выполненные из таких материалов, имеют ограниченную рабочую температуру. Обычно при нагреве выше 60-70°С начинается резкое снижение их физико-механических характеристик, хотя более теплостойкие пластмассы могут работать при температуре 15О-25О°С. Термостойкие полимеры с жесткими цепями и циклические структуры устойчивы до 400-600°С.

Неполярные термопластичные пластмассы. К неполярным пластикам относятся полиэтилен, полипропилен, полистирол и фторопласт-4.

Полиэтилен (- СН2 - СН2 — )„ — продукт полимеризации бесцветного газа этилена, относящийся к кристаллизующимся полимерам.

По плотности полиэтилен подразделяют на полиэтилен низкой плотности, получаемый в процессе полимеризации при высоком давлении (ПЭВД), содержащий 55-65% кристаллической фазы, и полиэтилен высокой плотности, получаемый при низком давлении (ПЭНД), имеющий кристалличность до 74 — 95%.

Чем выше плотность и кристалличность полиэтилена, тем выше механическая прочность и теплостойкость материала.. Теплостойкость полиэтилена невысока, поэтому длительно его можно применять при температурах до 60-100°С. Морозостойкость полиэтилена достигает — 70°С и ниже. Полиэтилен химически стоек, и при комнатной температуре нерастворим ни в одном из известных растворителей. При нагревании устойчив к воде, к ацетону, к спирту.

Недостатком полиэтилена является его подверженность старению. Для защиты от старения в полиэтилен вводят стабилизаторы и ингибиторы (2-3% сажи замедляют процессы старения в 30 раз).

Под действием радиоактивного облучения полиэтилен твердеет, приобретает большую прочность и теплостойкость.

Полиэтилен применяют для изготовления труб, литых и прессованных несиловых деталей (вентили, контейнеры и др.), полиэтиленовых пленок для изоляции проводов и кабелей, чехлов, остекления парников, облицовки водоемов; кроме того, полиэтилен служит покрытием на металлах для защиты от коррозии, влаги, электрического тока и др.

Полипропилен (— СН2 - СНСН3 - ),, - является производной этилена. Применяя металлоорганические катализаторы, получают полипропилен, содержащий значительное количество стереорегулярной структуры. Это жесткий нетоксичный материал с высокими физико-механическими свойствами. По сравнению с полиэтиленом этот пластик более теплостоек: сохраняет форму до температуры 150°С. Полипропиленовые пленки прочны и более газонепроницаемы, чем полиэтиленовые, а волокна эластичны, прочны и химически стойки. Нестабилизированный полипропилен подвержен быстрому старению. Недостатком пропилена является его невысокая морозостойкость (— 10 - 20°С).

Полипропилен применяют для изготовления труб, конструкционных деталей автомобилей, мотоциклов, холодильников, корпусов насосов, различных емкостей и др.Пленки используют в тех же целях, что и полиэтиленовые.

Полистирол ( - СН2 - СНС6 Н5 - )„— твердый, жесткий, прозрачный, аморфный полимер. По диэлектрическим характеристикам близок к полиэтилену, удобен для механической обработки, хорошо окрашивается.

Будучи неполярным, полистирол растворяется во многих неполярных растворителях (бензол), в то же время Он химически стоек к кислотам и щелочам; нерастворим в спиртах, бензине, маслах, воде. Полистирол наиболее стоек к радиоактивному облучению по сравнению с другими термопластами (присутствие в макромолекулах фенильного радикала С6 Н5 ).

Недостатками полистирола являются его невысокая теплостойкость, склонность к старению, образование трещин.

Ударопрочный полистирол представляет собой блоксополимер стирола с синтетическим каучуком. Такой материал имеет в 3 — 5 раз более высокую прочность на удар и в 10 раз более высокое относительное удлинение по сравнению с обычным полистиролом (рис. 199). Высокопрочные АБС-пластики (акрилонитрилбутадиенстирольные) отличаются повышенной химической стойкостью и ударной прочностью, имеют Ơв = 3,5 - 6,5 кгс/мм2 , Ев = 100 - 250 кгс/мм2 и теплостойкость по Вику 100—125°С). Однако диэлектрические свойства таких сополимеров ниже по сравнению с чистым полистиролом. Из полистирола изготовляют детали для радиотехники, телевидения и приборов, детали машин (корпуса, ручки и др.), сосуды для воды и химикатов, пленки стирофлекс для электроизоляции, а АБС-пластики применяются для деталей автомобилей, телевизоров, лодок, труб и т. д.

Физико-механические свойства неполярных термопластовТаблица 1

Материал

Плотность, г/см3

Рабочая температура, °С Предел прочности, кгс/мм2
максимальная минимальная

при рас-. тяжении

при сжатии при статическом изгибе

Полиэтилен:

ПЭВД

ПЭНД Полипропилен Полистирол Фторопласт-4

0,918-0,93 0,949-0,96 0,9-0,92 1,05-1,1

2,15-2,35

105-108 120-125 150

80

250

-40,-70 и ниже

-70 и ниже

-15

-20

-269

0,84-1,75 1,95-4,5

2,5

3.5-4 1,4-3,5

1,25-2,

1 2-3,6

6

10

2

1.2-1,7 2 — 3,8 7-8

5-10 1,1-1,4

Материал

Относительное удлинение при разрыве,

Ударная вязкость а, кгс •

• см/см-

Диэлектрическая проницаемость

Удельное объемное сопротивление Ом ■ см

Тангенс угла диэлектрических потерь при 106 Гц, 10"4

Электрическая прочность,

кВ/мм

Полиэтилен:

ПЭВД

ПЭНД

Полипропилен Полистирол Фторопласт-4

150-600

100-900

100-400

0,4-3,5

250-350

Не ломается

33 – 80

10-22

100

2,2-2,3 2,1-2,4 2 2 2,5-2,7 1,9-2,2

1017

1017

1016

1015

1018

2-3

2-5

2-5

3-4

2-2,5

45-60 45-60 28-40 20-25 35-40

Фторопласты (отечественное название пластика фторопласт-4, фторлон-4) являются термически и химически стойкими материалами. Основным представителем фторсодержащих полимеров является политетрафторэтилен ( — CF2 — CF2 — ),,. Это насыщенный полимер с макромолекулами в виде зигзагообразных спиралей. До температуры 250°С скорость кристаллизации мала и не влияет на его механические свойства, поэтому длительно эксплуатировать фторопласт-4 можно до температуры 250с С. Разрушение материала происходит при температуре выше 415°С. Аморфная фаза находится в высокоэластическом состоянии, это придает фторо-пласту-4 (фторлону-4) относительную мягкость. Температура стеклования — 120°С, но даже при весьма низких температурах (до — 269°С) пластик не охрупчивается. Высокая термостойкость фторопласта-4 обусловлена высокой энергией связи С — F. Кроме того, вследствие небольшого размера атомы фтора образуют плотную оболочку вокруг цепи С—С и защищают последнюю от химических реагентов. Фторопласт-4 стоек к действию растворителей, кислот, щелочей, окислителей. Практически фторлон-4 разрушается только под действием расплавленных щелочных металлов (калий, натрий) и элементарного фтора, кроме того, вода пластик не смачивает. Политетрафторэтилен малоустойчив к облучению. Это наиболее высококачественный диэлектрик, и его диэлектрические свойства мало изменяются в широком диапазоне температур. Фторопласт-4 обладает очень низким коэффициентом трения (/= 0,04), который не зависит от температуры (до 327°С когда начинает плавиться кристаллическая фаза). Недостатками фто-ропласта-4 являются хладотекучесть (результат рекристаллизации), выделение токсичного фтора при высокой температуре и трудность его переработки (вследствие отсутствия пластичности).

Фторопласт-4 применяют для изготовления труб для химикатов, деталей (вентили, краны, насосы, мембраны), уплотнительных прокладок, манжет, сильфонов, электрорадиотехнических деталей, антифрикционных покрытий на металлах (подшипники, втулки).

Разновидностью фторопласта является фторопласт-4Д, отличающийся формой и размером частиц, меньшей молекулярной массой. Это облегчает переработку материала в изделия. Физико-механические свойства одинаковы с фторопластом-4.

Волокно и пленку фторлон изготовляют из фторопласта-42. Фторлоновая ткань не горит, химически стойка, применяется для емкостей, рукавов, спецодежды, диафрагм и т. д.

Физико-механические свойства неполярных термопластичных пластмасс (термопластов) приведены в табл. 1.

Полярные термопластичные пластмассы. К полярным пластикам относятся фторопласт-3, органическое стекло, поливинилхлорид,. полиамиды, полиуретаны, полиэтилентерефталат, поликарбонат, полиарилаты, пентапласт, полиформальдегид.

Фторопласт-3 (фторлон-3) — полимер трифторхлорэтилена, имеет формулу ( — CF2 — CFC1 — )„ и является кристаллическим полимером.

Введение атома хлора нарушает симметрию звеньев макромолекул, материал становится полярным. Диэлектрические свойства снижаются, но появляется пластичность и облегчается переработка материала в изделия. Фторопласт-3, медленно охлажденный после формования, имеет кристалличность около 80 — 85%, а закаленный — 30 — 40%. Интервал рабочих температур от — 105 до + 70°С. При температуре 315°С начинается термическое разрушение. Хладотекучесть полимера проявляется слабее, чем у фторопласта-4. По химической стойкости уступает политетрафторэтилену, но все же обладает высокой стойкостью к действию кислот, окислителей, растворов щелочей и органических растворителей.

Модифицированный политрифторхлорэтилен, выпускаемый под названием фторопласт-ЗМ, обладает большей теплостойкостью (рабочая -температура 150—170°С), он более эластичен и легче формуется, чем фторо-пласт-3.

Фторопласт-3 используют как низкочастотный диэлектрик, кроме того, из него изготовляют трубы, шланги, клапаны, насосы, защитные покрытия металлов и др.

Органическое стекло — это прозрачный аморфный термопласт на основе сложных эфиров акриловой и метакриловой кислот. Чаще всего применяется полиметилметакрилат, иногда пластифицированный дибутилфталатом. Материал более чем в 2 раза легче минеральных стекол (р = 4=1,18 г/см3 ), отличается высокой атмосферостойкостыо, оптически прозрачен (светопрозрачность 92%), пропускает 75% ультрафиолетовых лучей (силикатные - 0,5%). При температуре 80°С органическое стекло начинает размягчаться; при температуре 105 —150°С появляется пластичность, что позволяет формовать из него различные детали. Механические свойства органического стекла зависят от температуры. Критерием, определяющим пригодность органических стекол для эксплуатации, является не только их прочность, но и появление на поверхности и внутри материала мелких трещин, так называемого «серебра». Этот дефект снижает прозрачность и прочность стекла. Причиной появления серебра являются внутренние напряжения, возникающие в связи с низкой теплопроводностью и высоким температурным коэффициентом линейного расширения материала.

Органическое стекло стойко к действию разбавленных кислот и щелочей, углеводородных топлив и смазок, растворяется в эфирах и кетонах, в органических кислотах, ароматических и хлорированных углеводородах. Старение органического стекла в естественных условиях протекает медленно.

Недостатком органического стекла является невысокая поверхностная твердость.

Увеличение термостойкости и ударной вязкости органического стекла достигается вытяжкой его в пластичном состоянии в разных направлениях (ориентированные стекла; при этом увеличивается в несколько раз прочность на удар и стойкость к «серебрению»); сополимеризацией или привитой полимеризацией полиметилметакрилата с другими полимерами, что повышает поверхностную твердость и теплостойкость; получением частично сшитой структуры (термостабильные стекла); применением многослойных стекол («триплексов») на основе органических стекол, склеенных прозрачной пленкой (например, из поливинилбутираля).

Органическое стекло используют в самолетостроении, автомобилестроении. Из органического стекла изготовляют светотехнические детали, оптические линзы и др. На основе полиметилметакрилата получают самоотверждающиеся пластмассы:-ACT, стиракрил, АКР. Указанные материалы применяют для изготовления штампов, литейных моделей и абразивного инструмента.

Поливинилхлорид является полярным аморфным полимером с химической формулой (— СН2 -СНС1 — )„. Пластмассы на основе поливинилхлорида имеют хорошие электроизоляционные характеристики, стойки к химикатам, не поддерживают горение, атмосферостойкие. Непластифицированный твердый поливинилхлорид называется винипластом. Винипласты имеют высокую механическую прочность и упругость. Из винипласта изготовляют трубы для подачи агрессивных газов, жидкостей и воды, защитные покрытия для электропроводки, детали вентиляционных установок, теплообменников, защитные. покрытия для металлических емкостей, строительные облицовочные плитки. Кроме того, винипластом облицовывают гальванические ванны. Недостатками этого материала являются низкая длительная прочность и низкая рабочая температура под нагрузкой (не свыше 60 — 70с С), большой коэффициент линейного расширения (6,5 - 8) • 10 -5 1/°С, хрупкость при низких температурах (tхр = — 10°С), tв — = 90 - 95°С).

При введении пластификатора получают полихлорвиниловый пластикат, имеющий морозостойкость — 15 - 50° С и температуру размягчения 160-195°С.

Пленочные материалы применяют для изоляции проводов и кабелей, консервации двигателей, изготовления средств защиты при работе с радиоактивными веществами. Из пластиката получают трубы, печатные валики, уплотнительные прокладки; используют для покрытия тканей (например, конвейерные ленты).

Полиамиды — это группа пластмасс с известными названиями: капрон, нейлон, анид и др. В составе макромолекул полимера присутствует амидная группа — NH - СО — , а также метиленовые группы — СН2 — , повторяющиеся от 2 до 10 раз. Общая формула полиамидов имеет вид

- NH - СО - (СН2 )„, - NH - СО - (СН2 )„

Полиамиды — кристаллизующиеся полимеры. Отдельные цепочки макромолекул располагаются таким образом, что между группами СО и NH, принадлежащими различным цепочкам, возникает водородная связь, повышающая температуру плавления до 210—264°С и способствующая образованию регулярной структуры. При одноосной ориентации получаются полиамидные волокна, нити, пленки.

Свойства разных видов полиамидов довольно близки. У них низкая плотность; предел прочности при разрыве 5 — 11 кгс/мм2 , относительное удлинение от 10—100 до 200 — 350%, прочность волокон 60 кгс/мм2 . Полиамиды имеют низкий коэффициент трения (f < 0,05), продолжительное время могут работать на истирание; кроме того, полиамиды ударопрочный и способны поглощать вибрацию. Они стойки к щелочам, бензину, спирту; устойчивы в тропических условиях.

К недостаткам полиамидов относится некоторая гигроскопичность и подверженность старению вследствие окисляемости (особенно при переработке смол). Водопоглощение зависит от содержания амидных групп и структуры и составляет от 1,75% (полиамид П-12) до 11 — 12% (капрон, П-54). Устойчивость полиамидов к свету повышается введением стабилизатора, а антифрикционные свойства — введением наполнителя — графита и др.

Из полиамидов изготовляют шестерни, втулки, подшипники, болты, гайки, шкивы, детали ткацких станков, маслобензопроводы, уплотнители гидросистем, колеса центробежных насосов, турбин, турбобуров, буксирные канаты и т. д. Полиамиды используют в электротехнической промышленности, медицине и, кроме того, как антифрикционные покрытия металлов.

Полиуретаны содержат уретановую группу - NH - СОО —. Кислород в молекулярной цепи сообщает полимерам гибкость, эластичность; им присуща высокая атмосферостойкость и морозостойкость ( — 60-:—70°С). Верхний температурный предел составляет 120-170°С (при высокой влажности — до 100—110°С). Свойства полиуретана в основном близки к свойствам полиамидов. Из полиуретана вырабатывают пленочные материалы и волокна, которые малогигроскопичны и химически стойки.

В зависимости от исходных веществ, применяемых при получении полиуретанов, они могут обладать различными свойствами, быть твердыми, эластичными и даже термореактивными.

Полиэтилентерефталат — сложный полиэфир с химической формулой

— CH2 -СН2 - ОСO - <=>-С0-0- …

В России выпускается под названием лавсан, за рубежом — майлар, терилен. Полиэтилентерефталат является кристаллическим полимером; при быстром охлаждении расплава можно получать аморфный полимер, который при нагревании свыше 80°С начинает кристаллизоваться.

Присутствие кислорода в основной цепи сообщает хорошую морозостойкость (— 70с С). Бензольное кольцо повышает теплостойкость (температура плавления 255 —257°С). Механическая прочность при растяжении 1,75 кгс/мм2 , модуль упругости 352 кгс/мм2 , при ориентации прочность возрастает. Полиэтилентерефталат является диэлектриком и обладает сравнительно высокой химической стойкостью, устойчив в условиях тропического климата. Из полиэтилентерефталата изготовляют шестерни, Кронштейны, канаты, ремни, ткани, пленки и др.

Поликарбонат — сложный полиэфир, угольной кислоты; выпускается под названием дифлон. Это кристаллический полимер, которому при плавлении и последующем охлаждении можно придать аморфную структуру. Такой материал становится стеклообразным и прозрачным. Свойства поликарбонатов своеобразны — им присущи гибкость и одновременно . прочность и жесткость. По прочности при разрыве материал близок к винипласту и отличается высокой ударной вязкостью, он не хладотекуч. При длительном нагревании, вплоть до температуры размягчения, образцы сохраняют свои размеры и остаются эластичными при низких, температурах.

Поликарбонат химически стоек к растворам солей, разбавленным кислотам и щелочам, топливу, маслам; разрушается крепкими щелочами. Выдерживает светотепловакуумное старение и тепловые удары. Тропикостоек. Поликарбонат имеет ограниченную стойкость к ионизирующим излучениям.

Из поликарбоната изготовляют шестерни, подшипники, автодетали, радиодетали и т. д, Его можно использовать в криогенной технике для работы в среде жидких газов. Дифлон применяется также в виде гибких, прочных пленок.

Полиарилаты — сложные гетероцепные полиэфиры. Полиарилатам присущи высокая термическая стойкость и морозостойкость (до — 100°С), хорошие показатели механической прочности и антифрикционные свойства. Полиарилаты радиационностойки и химически стойки. Полиарилаты применяются для подшипников, работающих в глубоком вакууме без смазки, в качестве уплотнительных материалов в буровой технике.

Пёнтапласт является хлорированным простым полиэфиром, относится к медленно кристаллизующимся полимерам. Пёнтапласт более устойчив к нагреванию по сравнению с поливинилхлоридом (отщепления хлористого водорода под действием температуры не происходит). Прочность пентапласта близка к прочности винипласта, по он выдерживает температуру 180с С и хорошо формуется, нехладотекуч, стоек к истиранию. Пёнтапласт, являясь веществом полярным, обладает удовлетворительными электроизоляционными свойствами. Кроме того, он водостоек. По химической стойкости занимает промежуточное положение между фторопластом и винипластом. Из пентапласта изготовляют трубы, клапаны, детали насосов и точных приборов, емкости, пленки и защитные покрытия на металлах.

Полиформальдегид — простой полиэфир — линейный полимер, имеющий в цепи кислород ( — СН2 — О — )„. Повышенная кристалличность (75%) и чрезвычайно плотная упаковка кристаллов дают сочетание таких свойств, как жесткость и твердость, высокая ударопрочность и упругость. Температурный интервал применимости полимера от —40 до 130 С; ой водостоек, стоек к минеральным маслам и бензину. Полиформальдегид используют для изготовления зубчатых передач, шестерен, подшипников, клапанов, деталей автомобилей, конвейеров и т. д.

Термостойкие пластики. В этих полимерах фениленовые звенья чередуются с гибкими звеньями (амидными, сульфидными и др). Температура эксплуатации их до 400°С. Кроме полимеров с гибкими звеньями создает ся новый класс полимеров с жесткими цепями, в которые вводятся устойчивые гетероциклы. Циклические структуры устойчивы до 600°С и выше. Практический интерес представляют ароматические полиамиды, полифениленоксид, полисульфон и гетероциклические полимеры — полиимиды и полибензимидазолы.

Ароматический полиамид — фенилон содержит фенильные радикалы, соединенные группами - NH - СО - . Это линейный гетероцепной полимер, способный кристаллизоваться. Длительно может работать при температуре 250—260°С (tпл = 430°С), морозостоек (даже при температуре жидкого азота), имеет повышенную стойкость к радиации и химическую стойкость. По сравнению с капроном, фенилон обладает более высокой усталостной прочностью и износостойкостью (рис. 202).

Из фенилона изготовляют подшипники, уплотнительные детали запорных устройств, зубчатые колеса, детали электрорадиопередач. Из него получают пленки, волокна, бумагу (номекс).

Полифениленоксид — простой ароматический полиэфир, аморфен, трудно кристаллизуется, по термической стабильности уступает фенилону. Длительно его можно применять до 13О-15О°С; обладает химической стойкостью, низким водопоглощением. Из полифениленоксида изготовляют детали оборудования, хирургические инструменты, изоляцию на высокочастотных установках.

Полисульфон — простой ароматический полиэфир, в макромолекулах которого между фениленовыми группами имеются звенья — SO2 — (повышают стойкость к нагреву), группы - О-, - С(СН3 )2 - (уменьшают жесткость). Это аморфный, трудно кристаллизующийся полимер. Материал термически стабилен, химически стоек, по прочностным свойствам близок к полифениленоксиду. Полисульфон применяют в виде пленок, литых изделий и покрытий для эксплуатации при температурах от — 100 до + 175°С (в инертной атмосфере до 400°С). Из него изготовляют детали автомобилей, станков, бытовых машин, электротехнических изделий, металлизованных матриц для типографских клише.

Полиимиды — ароматические гетероциклические полимеры. Цепь макромолекул содержит имидные циклы и ароматические ядра, соединенные гибкими связями - О -, - СО -. В зависимости от структуры полиимиды могут быть термопластичными и термореактивными. Наибольшее практическое применение получили линейные полиимиды. Полиимиды отличаются высокими механическими и электроизоляционными свойствами, широким диапазоном рабочих температур (от - 200 до + 300°С), стойкостью к радиации. На основе полиимидов получают пленки, по прочности не уступающие лавсановым. Полиимиды стойки к действию растворителей, масел, слабым кислотам и основаниям. Разрушаются при длительном воздействии кипящей воды и водяных паров. Могут длительно работать в глубоком вакууме при высоких температурах. Полиимидные прессовочные хорошо сопротивляются ползучести, стойки к истиранию, обладают низким коэффициентом трения.

Полиимиды применяют в виде пленок для изоляции проводов и кабелей, печатных схем, электронно-вакуумной тепловой изоляции. Пресс-материалы используют для изготовления изделий конструкционного, антифрикционного и электроизоляционного назначения. Полиимидные связующие применяют для наполненных пластиков.

Полибензимидазолы являются ароматическими гетероциклическими полимерами. В основной цепи макромолекул содержатся бензимидазольные ЦИКЛЫ.

Большинство полимеров бесцветные, однако полимеры с ярко выраженной системой сопряжения в цепи имеют темный цвет. Полимеры могут иметь кристаллическое или аморфное строение, быть термопластичными и термореактивными. Сшитая структура получается при введении сшивающих агентов.

Полибензимидазолы обладают высокой термостойкостью (температура разложения на воздухе 300-600°С, температура размягчения 300-490°С); хорошими прочностными показателями, высокими диэлектрическими свойствами. Волокна огнестойки и термостойки. Композиции на основе поли-бензимидазолов могут использоваться в качестве абляционных теплозащитных материалов. Антифрикционные материалы — АСП-пластики обладают термостойкостью и самосмазывающимися свойствами.

Полибензимидазолы применяют в виде пленок, волокон, тканей для специальных костюмов; из АСП-пластиков изготовляют подшипники, шестерни. Полибензимидазолы могут использоваться в качестве связующих для армированных пластиков.

Композиционные материалы

Композиционными называют искусственные материалы, получаемые сочетанием химически разнородных компонентов. Одним из компонентов является матрица (для полимеров — связующее), другим — упрочнители. Родоначальником композиционных материалов являются армированные стеклопластики. Их физическая природа, схемы армирования и расчетные особенности переносятся на композиционные полимерные материалы.

В качестве матриц используют полимерные, углеродные, керамические и металлические материалы. В качестве упрочнителей применяют волокна: стеклянные, углеродные, борные, органические, на основе нитевидных кристаллов (окислов, карбидов, боридов, нитридов и др.), а также металлические (проволоки), обладающие высокой прочностью и жесткостью. Свойства различных волокон, применяемых в качестве, упрочнителей, приведены в табл.2. Углеродные волокна на воздухе могут работать до температуры 450°С, в нейтральной и восстановительной среде они сохраняют прочность до 2200°С. Борные и керамические волокна обладают высокой твердостью и мало разупрочняются с повышением температуры. Органические волокна могут работать до температуры 200 — 300°С.

Свойства композиционных материалов зависят от состава компонентов, их сочетания, количественного соотношения и прочности связи между ними. Армирующие упрочняющие материалы могут быть в виде волокон, жгутов, нитей, лент, многослойных тканей.

Содержание упрочнителя в ориентированных материалах составляет 60—80% об.%, в неориентированных (с дискретными волокнами. и нитевидными кристаллами) — 20 — 30% об.%. Чем выше прочность и модуль упругости волокон, тем выше прочность и жесткость композиционного материала. Свойства матрицы определяют прочность композиции при сдвиге и сжатии и сопротивление усталостному разрушению.

Повышение адгезии матрицы к волокнам достигается поверхностной' обработкой последних. С этой целью применяют вискеризацию — введение нитевидных кристаллов в межволоконное пространство. Вискеризация осуществляется путем осаждения нитевидных кристаллов на поверхность волокон («мохнатые» волокна с выращенными на них перпендикулярно длине монокристаллами — «усами»). Этим достигается повышение прочности материала при сдвиге в 1,5 — 2 раза, модуля упругости при сдвиге и прочности при сжатии на 40 — 50%. По характеру матрицы композиционные материалы подразделяют на полимерные, углеродные и металлические. По упрочнителю их можно классифицировать на карбоволокниты (углепласты), содержащие в качестве упрочняющего материала углеродные волокна; бороволокниты с упрочнителями в виде борных волокон; органоволокниты с синтетическими волокнами; металлы, армированные волокнами

Свойства армирующих волокон таблица 2

Плот- Предел Модуль Относи- Температура
Тип волокна ность, прочно- упругости, тельное стабильности.
г/см3 сти, 103

удлинение, %

С С
кгс/мм2 кгс/мм2
Стеклянные:
алюмоборосиликатные 2,5-2,6 140-220 6 2-3 700*
высокомодульные 2,5-2,6 390-470 9,5-11 4,4-5. До 870
Углеродные высокомодульные

1,75-1,95

230-290 28-31 0,7-1 2200
Борные 2,5 280-320 39-40 0,7-0,8

TТразм = 3650) 980

пл = 2200)
Окись алюминия 3,97 210 17 1000 - 1500
Карбид кремния 3,18 350 42 _ (Tпл = 2050) 1200 - 1700
Синтетические: (Tпл = 2090)
полиамидное (капрон) 1,14 77-85 0,32-0,35 13-17 196-216**
полиэфирное (лавсан) 1,38 48-62 1,02-1,1 14-15 235-255**

полиакрилонитрильное (нитрон)

поливинилспиртовое (винол)

1,17 46-56 0,46-0,58 16-17

Поливинилспиртовое (винол)

1,26 60-100 2,5 7-12 -
Из ароматического полиамида 1,4 200-280 11-12 2-5
Проволоки:
вольфрамовая 19,3 220-430 35-42
молибденовая 10.2 215 36 _ __
титановая 4,72 190-200 12 _
стальная 7,9 420 20 -

*Температура плавления.

**Температура деструкции

Преимуществом композиционных материалов являются высокие прочность и жесткость (для карбоволокнитов Ơв = 65 - 170 кгс/мм2 , Е= 12000 - 18 000 кгс/мм2 ; для бороволокнитов Ơв = 90 - 175 кгс/мм2 , Е = 21400 - 27000 кгс/мм2 ), хорошее сопротивление хрупкому разрушению, жаропрочность и термическая стабильность. Плотность композиционных материалов составляет от 1,35 до 4,8 г/см3 .

Композиционные материалы являются перспективными конструкционными материалами для различных отраслей машиностроения.

1. Карбоволокниты

Карбоволокниты (углепласты) представляют собой композиции, состоящие из полимерного связующего (матрицы) и упрочнителей (наполнителей) в виде углеродных волокон (карбоволокон).

Углеродные волокна получают термообработкой органических волокон. В зависимости от температуры термообработки и содержащегося углерода волокна подразделяют на частично карбонизованные (900°С, 85-90%), карбонизованные (900-1500°С, 95-99%) и графитированные, (1500 — 3000°С, >99.%). Два последних типа имеют наибольшее значение.

В зависимости от формы исходного сырья углеродные волокна могут быть в виде нитей, жгутов, войлока, тканей; волокна можно перерабатывать на обычном текстильном оборудовании.

Практическое применение нашли вискозные кордные волокна (ВК) и полиакрилонитрильные (П АН-вол окна).

Свойства волокон зависят от термообработки, с увеличением температуры происходит образование гексагональных углеродных слоев, их рост и упорядочение. Структура волокон фибриллярная. Каждая фибрилла состоит из лентообразных микрофибрилл, разделенных узкими и длинными продольными порами.

В результате вытяжки достигается ориентация кристаллитов, что позволяет получать высокопрочные и высокомодульные углеродные волокна.

Обычные углеродные волокна имеют Ơв = 50 - 100 кгс/мм2 и Е = = 2000--7000 кгс/мм2 ; для высокопрочных и высокомодульных волокон Ơв >150 кгс/мм2 и Е> 15000 кгс/мм2 . По удельным прочности (Ơ/р) и жесткости (Е/р) последние превосходят все жаростойкие волокнистые материалы.

Высокая энергия связи С — С углеродных волокон позволяет им сохранять прочность при очень высоких температурах (в нейтральной и восстановительной средах до 2200°С), а также при низких температурах. От окисления поверхности волокна предохраняют защитными, покрытиями (пиролитическими). В отличие от стеклянных волокон карбоволокна плохо смачиваются связующим (низкая поверхностная энергия), поэтому их подвергают травлению, аппретированию, вискеризации.

Связующими служат синтетические полимеры (полимерные карбоволокниты); синтетические полимеры, подвергнутые пиролизу (коксованные карбоволокниты); пиролитический углерод (пироуглеродные карбоволокниты).

В качестве полимерных связующих применяют эпоксидные, фенолоформальдегидные. смолы, полиимиды и др.

Эпоксифенольные карбоволокниты КМУ-1л, упрочненный углеродной лентой, и КМУ-lл на жгуте, вискеризованном нитевидными кристаллами, могут длительно работать при температуре до 200°С.

Карбоволокниты КМУ-3 и КМУ-Зл получают на эпоксианилиноформальдегидном связущем, их можно эксплуатировать при температуре до 100°С, они наиболее технологичны. Карбоволокниты КМУ-2 и КМУ-2л на основе полиимидного связущего можно применять при температуре до 300°С [43].

Карбоволокниты отличаются высокой статической и динамической выносливостью (рис. 215), сохраняют это свойство при нормальной и очень низкой температуре (высокая теплопроводность волокна предотвращает саморазогрев материала за счет внутреннего трения). Они водо- и химически стойки. После воздействия на воздухе рентгеновского излучения Ơи и Εи почти не изменяются.

Теплопроводность углепластиков в 1,5-2 раза выше, чем у стеклопластиков. Они имеют следующие электрические свойства: р„ = 0,0024 4- 0,0034 Ом-см (вдоль волокон); Е=10 и tg δ = 0,01 (при частоте 1010 Гц).

Карбостекловолокниты содержат наряду с угольными стеклянные, волокна, что удешевляет материал.

Карбоволокниты с углеродной матрицей. Коксованные материалы получаются из обычных полимерных карбоволокнитов, подвергнутых пиролизу в инертной или восстановительной атмосфере. При температуре 800—1500°С образуются карбонизованные, при 2500-3000°С графитированные карбоволокниты. Для получения пироуглеродных материалов упрочнитель выкладывается по форме -изделия и помещается в печь, в которую пропускается газообразный углеводород (метан). При определенном режиме (1100°С и остаточном давлении 20 мм-рт. ст.) метан разлагается, и образующийся пиролитический углерод осаждается на волокнах упрочнителя, связывая их.

Образующийся при пиролизе связующего кокс имеет высокую прочность сцепления с углеродным волокном. В связи с этим композиционный материал обладает высокими механическими и абляционными свойствами, стойкостью к термическому удару.

Карбоволокнит на углеродной матрице типа КУП-ВМ: по значениям прочности и ударной вязкости в 5 —10 раз превосходит специальные графиты; при нагреве в инертной атмосфере и вакууме он сохраняет прочность до 2200°С, на воздухе окисляется при 450°С и требует защитного покрытия. Коэффициент трения одного карбоволокнита с углеродной матрицей по другому высок (0,35-0,45), а износ мал (0,7-1 мкм на торможение).

Полимерные карбоволокниты используют в судо- и автомобилестроении (кузова гоночных машин, шасси, гребные винты); из них изготовляют подшипники, панели отопления, спортивный инвентарь, части ЭВМ. Высокомодульные карбоволокниты применяют для изготовления деталей авиационной техники, аппаратуры для химической промышленности, в рентгеновском оборудовании и др.

Карбоволокниты с углеродной матрицей применяют для тепловой защиты, дисков авиационных тормозов, химически стойкой аппаратуры, заменяя различные типы графитов.

2. Бороволокниты

Бороволокниты представляют собой композиции из полимерного связующего и упрочнителя — борных волокон.

Бороволокниты отличаются высокой прочностью при сжатии, сдвиге и срезе, низкой ползучестью, высокими твердостью и модулем упругости, тепло- и электропроводностью.

Борное волокно получается осаждением бора из газовой фазы на поверхность разогретой вольфрамовой проволоки. Вследствие диффузии и взаимодействия между бором и вольфрамом последний превращается в бориды вольфрама. Таким образом, наружная оболочка волокна состоит из металлического бора, сердечник — из кристаллических боридов переменного состава. Борные волокна имеют d = 90 -- 150 мкм, Ơ„ = 280 - 320 кгс/мм2 , г = 0,7 - 0,8%, Е = 39000 -- 40000 кгс/мм2 , выпускаются под марками БН и борофил (США). При температуре > 400°С волокна окисляются и требуют нанесения защитных покрытий (карбиды). Ячеистая микроструктура борных волокон обеспечивает высокую прочность при сдвиге на границе раздела с матрицей.

Помимо непрерывного борного волокна применяют комплексные боростеклонити, в которых несколько параллельных борных волокон оплетаются стеклонитью, придающей формоустойчивость. Применение боростеклонитей. облегчает технологический процесс изготовления бороволокнитов.

В качестве матриц для получения бороволокнитов используют модифицированные эпоксидные и полиимидные связующие. Бороволокниты КМБ-1 и КМБ-1к предназначены для длительной работы при температуре 200°С; КМБ-3 и КМБ-Зк не требуют высокого давления при переработке и могут работать при температуре не свыше 100°С; КМБ-2к работоспособен при 300°С .

Бороволокниты обладают высокой усталостной прочностью (до 35 — 40 кгс/мм2 ), их свойства можно изменять за счет различной укладки упрочнителя. Бороволокниты стойки к воздействию проникающей радиации, к воде, органическим растворителям и горюче-смазочным материалам.

3.Органоволокниты

Представляют собой композиционные материалы, состоящие из полимерного связующего и упрочнителей в виде синтетических волокон. Они устойчивы в агрессивных средах и во влажном тропическом климате; диэлектрические свойства высокие, а теплопроводность низкая.

Органоволокниты применяют в качестве изоляционного и конструкционного материала в электрорадиопромышленности, авиационной технике, автостроении; из них изготовляют трубы, емкости.

Резиновые материалы

1. Общие сведения, состав и классификация резин

Резиной называется продукт специальной обработки (вулканизации) смеси каучука и серы с различными добавками.

Резина как технический материал отличается от других материалов высокими эластическими свойствами, которые присущи каучуку — главному исходному компоненту резины. Она способна к очень большим деформациям (относительное удлинение достигает 1000%), которые почти полностью обратимы. При комнатной температуре резина находится в высокоэластическом состоянии и ее эластические свойства сохраняются в широком диапазоне температур.

Модуль упругости лежит в пределах 0,1 — 1 кгс/мм2 , т. е. он в тысячи и десятки тысяч раз .меньше, чем для других материалов. Особенностью резины является ее малая сжимаемость (для инженерных расчетов резину считают несжимаемой); коэффициент Пуассона равен 0,4 — 0,5, тогда как для металла эта величина составляет 0,25 — 0,30. Другой особенностью резины как технического материала является релаксационный характер деформации. При комнатной температуре время релаксации может составлять-10 ~ 4 с й более. При работе резины в условиях многократных механических напряжений часть энергии, воспринимаемой изделием, теряется на внутреннее трение (в самом каучуке и между молекулами каучука и частицами добавок); это трение преобразуется в теплоту и является причиной гистерезисных потерь. При эксплуатации толстостенных деталей (например, шин) вследствие низкой теплопроводности материала нарастание температуры в массе резины снижает ее работоспособность.

Кроме отмеченных особенностей для резиновых материалов характерны высокая стойкость к истиранию, газо- и водонепроницаемость, химическая стойкость, электроизолирующие свойства и небольшая плотность.

В результате совокупности технических свойств резиновых материалов их применяют для амортизации и демпфирования, уплотнения и герметизации в условиях воздушных и жидкостных сред, химической защиты деталей машин, в производстве тары для хранения масел и горючего, различных трубопроводов (шлангов), для покрышек и камер колес самолетов, автотранспорта и т. д. Номенклатура резиновых изделий насчитывает более 40000 наименований.

Состав и классификация резин. Основой всякой резины служит каучук натуральный (НК) или синтетический (СК), который и определяет основные свойства резинового материала. Для улучшения физико-механических свойств каучуков вводятся различные добавки (ингредиенты). Таким образом, резина состоит из каучука и ингредиентов, рассмотренных ниже. 1. Вулканизующие вещества (агенты) участвуют в образовании пространственно-сеточной структуры вулканизата. Обычно в качестве таких веществ применяют серу и селем, для некоторых каучуков перекиси. Для резины электротехнического назначения вместо элементарной серы (которая взаимодействует с медью) применяют органические сернистые соединения — тиурам (тиурамовые резины).

Ускорители процесса вулканизации: полисульфиды, окислы свинца, магния и др. влияют как на режим вулканизации, так и на физико-механические свойства вулканизатов.. Ускорители проявляют свою наибольшую активность в присутствии окислов некоторых металлов (цинка и др.), называемых поэтому в составе резиновой смеси активаторами.

Противостарители (антиоксиданты) замедляют процесс старения резины, который ведет к ухудшению ее эксплуатационных свойств. Существуют противостарители химического и физического действия. Действие первых заключается в том, что они задерживают окисление каучука в результате окисления их самих или за счет разрушения образующихся перекисей каучука (применяются альдольнеозон Д и др.). Физические противостарители (парафин, воск) образуют поверхностные защитные пленки, они применяются реже.

Мягчители (пластификаторы) облегчают переработку резиновой смеси, увеличивают эластические свойства каучука, повышают морозостойкость резины. В качестве мягчителей вводят парафин, вазелин, стеариновую кислоту, битумы, дибутилфталат, растительные масла. Количество мягчителей 8 — 30% от массы каучука.

Наполнители по воздействию на каучук подразделяют на активные (усиливающие) и неактивные (инертные). Усиливающие наполнители (углеродистая сажа и белая сажа — кремнекислота, окись цинка и др.) повышают механические свойства резин: прочность, сопротивление истиранию, твердость. Неактивные наполнители (мел, тальк, барит) вводятся для удешевления стоимости резины.

Часто в состав резиновой смеси вводят регенерат — продукт переработки старых резиновых изделий и отходов резинового производства. Кроме снижения стоимости регенерат повышает качество резины, снижая ее склонность к старению.

5.Красители минеральные или органические вводят для окраски резин.

Некоторые красящие вещества (белые, желтые, зеленые) поглощают коротковолновую часть солнечного спектра и этим защищают резину от светового старения.

Любой каучук является непредельным высокополимерным соединением с двойной химической связью между углеродными атомами в элементарных звеньях макромолекулы. Молекулярная масса каучуков исчисляется в 400000 — 450000. Структура макромолекул линейная или слаборазветвленная и состоит из отдельных звеньев, которые имеют тенденцию свернуться в клубок, занять минимальный объем, но этому препятствуют силы межмолекулярного взаимодействия, поэтому молекулы каучука извилистые (зигзагообразные). Такая форма молекул и является причиной исключительно высокой эластичности каучука (под небольшой нагрузкой происходит выпрямление молекул, изменяется их конформация). По свойствам каучуки напоминают термопластичные полимеры. Наличие в молекулах каучука непредельных связей позволяет, при определенных условиях, переводить его в термостабильное состояние. Для этого по месту двойной связи присоединяется двухвалентная сера (или другое вещество), которая образует в поперечном направлении как бы «мостики» между нитевидными молекулами каучука, в результате чего получается пространственно-сетчатая структура, присущая резине (вулканизату). Процесс химического взаимодействия каучука с серой в технике называется вулканизацией

В зависимости от количества вводимой серы получается различная частота сетки полимера. При введении 1-5% серы образуется редкая сетка, и резина получается высокоэластичной, мягкой. С увеличением процентного содержания серы сетчатая структура становится все более частой, резина более твердой, и при максимально возможном (примерно 30%) насыщении каучука серой образуется твердый материал, называемый эбонитом]

При вулканизации изменяется молекулярная структура полимера (образуется пространственная сетка), что влечет изменение его физико-механических свойств: резко возрастет прочность при растяжении и эластичность каучука, а пластичность почти полностью исчезает (например, натуральный каучук имеет Ơв = 0,10 - 0,15 кгс/мм2 , после вулканизации Ơв = 3,5 кгс/мм2 ); увеличивается твердость, сопротивление износу. Многие каучуки растворимы в растворителях, резины только набухают в них и более стойки к химикатам. Резины имеют более высокую теплостойкость (НК размягчается при температуре 90°С, резина работает при температуре свыше 100э С).

На изменение свойств резины оказывает влияние взаимодействие каучука с кислородом, поэтому при вулканизации одновременно происходят два процесса: структурирование под действием вулканизующего агента и деструкция под влиянием окисления и температуры. Это особенно характерно для резин из НК. Для синтетических каучуков (СК) процесс вулканизации дополняется полимеризацией: под действием кислорода и температуры образуются межмолекулярные углеродистые связи, упрочняющие термостабильную структуру, что дает повышение прочности.

Термическая устойчивость вулканизата зависит от характера образующихся в процессе вулканизации связей. Наиболее прочные, а следовательно, термоустойчивые связи — С — С — (62,7 ккал/моль), наименьшая прочность у полисульфидной связи — С — S — С — (27,5 ккал/моль).

Современная физическая теория упрочнения каучука объясняет повышение его прочности наличием сил связи (адсорбции и адгезии), возникающих между каучуком и наполнителем, а также образованием непрерывной цепочно-сетчатой структуры наполнителя вследствие взаимодействия между частицами наполнителя. Возможно и химическое взаимодействие каучука с наполнителем.

По назначению резины подразделяют на резины общего назначения и резины специального назначения (специальные).

2. Резины общего назначения

К группе резин общего назначения относят вулканизаты неполярных каучуков - НК, СКБ, СКС, СКИ.

НК — натуральный каучук является полимером изопрена (С5 Н8 )„. Он растворяется в жирных и ароматических растворителях (бензине, бензоле, хлороформе, сероуглероде и др.), образуя вязкие растворы, применяемые в качестве клеев. При нагревании выше 80—100°С каучук становится пластичным и при 200°С начинает разлагаться. При температуре — 70°С НК становится хрупким. Обычно НК аморфен. Однако при длительном хранении возможна его кристаллизация. Кристаллическая фаза возникает также при растяжении каучука, что значительно увеличивает его прочность. Для получения резины НК вулканизуют серой. Резины на основе НК отличаются высокой эластичностью, прочностью, водо- и газонепроницаемостью, высокими электроизоляционными свойствами: р„ = 3-1014 -23·1018 Ом см; е = 2,5.

СКБ — синтетический каучук бутадиеновый (дивинильный) получают по методу С. В, Лебедева. Формула полибутадиена (С4 Н6 )„. Он является некристаллизующимся каучуком и имеет низкий предел прочности при растяжении, поэтому в резину на его основе необходимо вводить усиливающие наполнители (сажу, окись цинка и др.). Морозостойкость СКБ невысокая ( — 40 - 45°С). Он набухает в тех же растворителях, что и НК. Кроме СКБ выпускают дивинильные каучуки СКВ и СКБМ, отличающиеся повышенной морозостойкостью, а также стереорегулярный каучук СКД, который по основным техническим свойствам приближается к НК. Дивинильные каучуки вулканизуются серой аналогично натуральному каучуку.

СКС - бутадиенстирольный каучук получается при совместной полимеризации бутадиена (С4 Н6 ) и стирола (СН2 = СН — С6 Н5 ).

В зависимости от процентного содержания стирола каучук выпускают нескольких марок: СКС-10, СКС-30, СКС-50. Свойства каучука зависят от содержания стирольных звеньев. Так, например, чем больше стирола, тем выше прочность, но ниже морозостойкость. Из наиболее распространенного каучука СКС-30 получают резины с хорошим сопротивлением старению и хорошо работающие при многократных деформациях. По газонепроницаемости и диэлектрическим свойствам они равноценны резинам на основе НК. Каучук СКС-10 можно применять при низких температурах (-74; -77°С). При подборе соответствующих наполнителей можно получить резины с высокой механической прочностью.

СКИ — синтетический каучук изопреновый — продукт полимеризации изопрена (С5 Н8 ). .Получение СКИ стало возможным в связи с применением новых видов катализаторов (например, лития). По строению, химическим и физико-механическим свойствам СКИ близок к натуральному каучуку. В промышленности выпускают, каучук СКИ-3, СКИ-З-П, наиболее близкий по свойствам к НК; каучук СКИ-3Д предназначен для электроизоляционных резин, СКИ-ЗВ - для вакуумной техники.

Резины общего назначения могут работать в среде воды, воздуха, слабых растворов кислот и щелочей. Интервал рабочих температур составляет от — 35 --- -50 до 80-130°С. Из этих резин изготовляют шины, ремни, рукава, транспортерные ленты, изоляцию кабелей, различные резинотехнические изделия.

3. Резины специального назначения

Специальные резины подразделяются на несколько видов: маслобензостойкие, теплостойкие, светоозоностойкие, износостойкие, электротехнические, стойкие к гидравлическим жидкостям.

Маслобензостойкие резины получают на основе каучуков хлоропренового (наирит), СКН и тиокола.

Наирит является отечественным хлоропреновым каучуком. Хлоропрену соответствует формула СН2 = СС1 — СН = СН2 .

Вулканизация может производиться термообработкой, даже без серы, так как под действием температуры каучук переходит в термостабильное состояние. Резины на основе наирита обладают высокой эластичностью, вибростойкостью, озоностойкостыо, устойчивы к действию топлива и масел, хорошо сопротивляются тепловому старению. (Окисление каучука замедляется экранирующим действием хлора на двойные связи). По температуроустойчивости и морозостойкости ( — 35ч— 40°С) они уступают как НК, так и другим СК. Электроизоляционные свойства резины на основе полярного наирита ниже, чем у резины на неполярных каучуках. (За рубежом полихлорпреновый каучук выпускается под названием неопрен, пербунан-С и др.).

СКН — бутадиеннитрильный каучук — продукт совместной полимеризации бутадиена с нитрилом акриловой кислоты:

- СН2 - СН = СН - СН2 - СН2 - CHCN -

В зависимости от состава каучук выпускают следующих марок: СКН-18, СКН-26,. СКН-40. (Зарубежные марки хайкар, пербунан, буна-N и др.). Присутствие в молекулах каучука группы CN сообщает ему полярные свойства. Чем выше полярность каучука, тем выше его механические и химические свойства и тем ниже морозостойкость (например СКН-18 от -50 до -60 0 С, СКН-40 от -26 до -28°С). Вулканизируют СКН при помощи серы. Резины на основе СКН обладают высокой прочностью (Ơв = 3,5 кгс/мм2 ), хорошо сопротивляются истиранию, но по эластичности уступают резинам на основе НК, превосходят их по стойкости к старению и действию разбавленных кислот и щелочей. Маслобензостойкие резины могут работать в среде бензина, топлива, масел в интервале

температур от — 30 -= 50 до 100-130°С. Резины на основе СКН применяют для производства ремней, транспортерных лент, рукавов, маслобензостойких резиновых деталей (уплотнительные прокладки, манжеты и т. п.).

Полисулъфидный каучук, или тиокол, образуется при взаимодействии галоидопроизводных углеводородов с многосернистыми соединениями щелочных металлов:

... — СН2 — СН2 — S2 — S2 — ...

Тиокол вулканизуется перекисями. Присутствие в основной цепи макромолекулы серы придает каучуку полярность, вследствие чего он становится устойчивым к топливу и маслам, к действию кислорода, озона, солнечного света. Сера также сообщает тиоколу высокую газонепроницаемость (выше, чем у НК), поэтому тиокол — хороший герметизирующий материал. Механические свойства резины на основе тиокола невысокие. Эластичность резин сохраняется при температуре — 40 -.— 60°С. Теплостойкость не превышает 60 —70°С. Тиоколы новых марок работают при температуре до 130°С.

Теплостойкие резины получают на основе каучука СКТ.

СКТ- синтетический каучук теплостойкий, представляет собой кремнийорганическое (полисилоксановое) соединение с химической формулой:

... -Si(CH3 )2 -O-Si(CH3 )2 - ...

Каучук вулканизуется перекисями и требует введения усиливающих наполнителей (белая сажа). Присутствие в основной молекулярной цепи прочной силоксановой связи придает каучуку высокую теплостойкость. Так как СКТ слабо полярен, он обладает хорошими диэлектрическими свойствами. Диапазон рабочих температур СКТ составляет от —60 до + 250°С. Низкая адгезия, присущая кремнийорганическим соединениям (вследствие их слабой полярности), делает СКТ водостойким и гидрофобным (например, применяется для защиты от обледенения). В растворителях и маслах он набухает, имеет низкую механическую прочность, высокую газопроницаемость, плохо сопротивляется истиранию. При замене метильных групп (СН3 ) на другие радикалы получают другие виды силоксановых каучуков. Каучук с винильной группой (СКТВ) устойчив к тепловому старению и обладает меньшей текучестью при сжатии, температура эксплуатации от - 55 до. + 300°С. Вводя фенильную группу (С6 Н5 ), получают каучук (СКТФВ), обладающий повышенной морозостойкостью (- -80 - 100°С) и сопротивляемостью действию радиации. Можно сочетать различные радикалы, обрамляющие силоксановую связь. Так, фенилвинилсилоксановый каучук имеет повышенные механические свойства. Если ввести в боковые группы макромолекулы СКТ атомы F или - CN, приобретается устойчивость к топливу и маслам. Введение в основную цепь атомов бора, фосфора и др. дает возможность повысить теплостойкость резин до 350 -4000 С и увеличить их клеящую способность.

Морозостойкими являются резины на основе каучуков, имеющих низкие температуры стеклования. Например, резины на основе СКС-10 и СКД могут работать при температуре до — 600 С; НК, СКБ, СКС-30, СКН до - 50°С, СКТ ниже - 75°С.

Светоозоностойкие резины вырабатывают на основе насыщенных каучуков — фторсодержащих (СКФ), этиленпропиленовых (СКЭП), бутилкаучука.

Фторсодержащие каучуки получают сополимеризацией ненасыщенных фторированных углеводородов (например, CF2 = CFC1, СН2 = CF2 и др.).Отечественные фторкаучуки выпускают под марками СКФ-32, СКФ-26;зарубежные — Кель-эф и Вайтон. Каучуки устойчивы к тепловому старению, маслам, топливу, различным растворителям, даже при повышенных:

температурах, негорючи. Вулканизованные резины обладают высоким сопротивлением истиранию. Теплостойкость длительная (до 300°С).

СКЭП — сополимер этилена с пропиленом — представляет собой белую каучукоподобную массу, которая обладает высокой прочностью и эластичностью, очень устойчива к тепловому старению, имеет хорошие диэлектрические свойства. Кроме СКЭП выпускают тройные сополимеры СКЭПТ (за рубежом близкие по свойствам каучуки - висталом и.дутрал).

Резины на основе фторкаучуков и этиленпропилена стойки к действию» сильных окислителей (HNO3 , H2 O2 и др.), применяются для уплотнительных изделий, диафрагм, гибких шлангов и т. д., не разрушаются при работе в атмосферных условиях в течение нескольких лет.

Бутилкаучук получается совместной полимеризацией изобутилена с небольшим количеством изопрена (2 — 3%). ;

В бутилкаучуке мало ненасыщенных связей, вследствие чего он обладает стойкостью к кислороду, озону и другим химическим реагентам. Каучук кристаллизующийся, что позволяет получать материал с высокой механической прочностью (хотя эластические свойства низкие). Каучук обладает высоким сопротивлением истиранию и высокими диэлектрическими характеристиками. По температуростойкости уступает другим резинам.

Бутилкаучук — химически стойкий материал. В связи с этим он в. основном предназначен для работы в контакте с концентрированными кислотами и другими химикатами; кроме того, его применяют в шинном: производстве.

Износостойкие резины получают на основе полиуретановых каучуков-СКУ.

Полиуретановые каучуки обладают высокой прочностью, эластичностью, сопротивлением истиранию, маслобензостойкостью. В структуре каучука нет ненасыщенных связей, поэтому он стоек к кислороду и озону, его газонепроницаемость в 10 — 20 раз выше, чем у НК. Рабочие температуры резин на его основе составляют от - 30 до + 130°С. На основе сложных полиэфиров вырабатывают СКУ-7, СКУ-8, СКУ-50; на основе простых полиэфиров - СКУ-ПФ, СКУ-ПФЛ. Последние отличаются высокой морозостойкостью (для СКУ-ПФ. tхр = - 75°С, для СКУ-50 txp = = — 35С С) и гидролитической стойкостью. Уретановые резины стойки к воздействию радиации. Зарубежные названия уретановых каучуков — адипрен, джентан S, эластотан. Резины на основе СКУ применяют для автомобильных шин, для транспортировки абразивных материалов, обуви.

Морозостойкими являются резины на основе каучуков, имеющих низ-' кие температуры стеклования. Например, резины на основе СКС-10 и СКД; могут работать при температуре до — 60с С; НК, СКБ, СКС-30, СКН до - 50°С, СКТ ниже - 75°С.

Светоозоностойкие резины вырабатывают на основе насыщенных каучуков — фторсодержащих (СКФ), этиленпропиленовых (СКЭП), /бутилкаучука.

Фторсодержащие каучуки получают сополимеризацией ненасыщенных.;: фторированных углеводородов (например, CF2 = CFC1, СН2 = CF2 и др.)..г Отечественные фторкаучуки выпускают под марками СКФ-32, СКФ-26;; зарубежные — Кель-эф и Вайтон. Каучуки устойчивы к тепловому старению, маслам, топливу, различным растворителям, даже при повышенных: температурах, негорючи. Вулканизованные резины обладают высоким сопротивлением истиранию. Теплостойкость длительная (до 300°С).

СКЭП — сополимер этилена с пропиленом — представляет собой белую» каучукоподобную массу, которая обладает высокой прочностью и эластичностью, очень устойчива к тепловому старению, имеет хорошие диэлектрические свойства. Кроме СКЭП выпускают тройные сополимеры СКЭПТ' (за рубежом близкие по свойствам каучуки - висталом и.дутрал).

Резины на основе фторкаучуков и этиленпропилена стойки к действию сильных окислителей (HNO3 , H2 O2 и др.), применяются для уплотнительных изделий, диафрагм, гибких шлангов и т. д., не разрушаются при работе в атмосферных условиях в течение нескольких лет.

Бутилкаучук получается совместной полимеризацией изобутилена с небольшим количеством изопрена (2 — 3%).

В бутилкаучуке мало ненасыщенных связей, вследствие чего он обладает стойкостью к кислороду, озону и другим химическим реагентам. Каучук кристаллизующийся, что позволяет получать материал с высокой механической прочностью (хотя эластические свойства низкие). Каучук обладает высоким сопротивлением истиранию и высокими диэлектрическими характеристиками. По температуростойкости уступает другим резинам.

Бутилкаучук — химически стойкий материал. В связи с этим он в. основном предназначен для работы в контакте с концентрированными кислотами и другими химикатами; кроме того, его применяют в шинном производстве.

Износостойкие резины получают на основе полиуретановых каучуков-СКУ.

Полиуретановые каучуки обладают высокой прочностью, эластичностью, сопротивлением истиранию, маслобензостойкостыо. В структуре каучука нет ненасыщенных связей, поэтому он стоек к кислороду и озону, его газонепроницаемость в 10 — 20 раз выше, чем у НК. Рабочие температуры резин на его основе составляют от — 30 до + 130°С. На основе сложных полиэфиров вырабатывают СКУ-7, СКУ-8, СКУ-50; на основе простых полиэфиров - СКУ-ПФ, СКУ-ПФЛ. Последние отличаются высокой морозостойкостью (для СКУ-ПФ' txp = - 75С, для СКУ-50 txp 4 = — 35С С) и гидролитической стойкостью. Уретановые резины стойки к воздействию радиации. Зарубежные названия уретановых каучуков — адипрен, джентан S, эластотан. Резины на основе СКУ применяют для автомобильных шин, транспортерных лент, обкладки труб и желобов для транспортировки абразивных материалов, обуви и др.

Электротехнические резины включают электроизоляционные и электропроводящие резины. Электроизоляционные резины, применяемые для изоляции токопроводящей жилы проводов и кабелей, для специальных перчаток и обуви, изготовляют только на основе неполярных каучуков НК, СКБ; СКС, СКТ и бутилкаучука. Для них pυ . == 1011 ~ 1015 Ом-см, s =• = 2,5-4, tg δ = 0,005 ч-0,01.

Электропроводящие резины для экранированных кабелей получают из НК, СКН, наирита, особенно из полярного каучука СКН-26 с введением в состав углеродной сажи и графита (65 — 70%). Для них pv — 102 н-104 Ом-см.

Резину, стойкую к гидравлическим жидкостям, используют для уплотнения подвижных и неподвижных соединений гидросистем, рукавов, диафрагм, насосов; для работы в масле применяют резину на основе СКН, набухание которой в жидкости не превышает 1-4%. Для кремнийорганических жидкостей применимы неполярные резины на основе НК, СКМС-10 и др.

4. Физико-механические свойства резин и их применение

При растяжении резины происходит разрыв цепей вулканизационной сетки, при этом более слабые и легко перегруппировывающиеся связи способствуют релаксации перенапряжений и облегчают ориентацию главных цепей. Более прочные связи сохраняют целостность сетки при больших деформациях.

Для каучуков и резины характерны большие деформации при сравнительно низких напряжениях. Напряжения зависят от времени действия силы и от скорости деформирования, т. е. являются релаксационными. Механические свойства зависят от соотношения энергии межмолекулярного взаимодействия и энергии теплового движения звеньев. "Релаксация убыстряется при нагревании (энергичнее тепловое движение), поэтому для резин характерна резко выраженная зависимость механических свойств от температуры. Напряжение в процессе релаксации достигает равновесного значения. В связи с этим механическое поведение резины определяется ее упругими (высокоэластическими) свойствами при равновесии и релаксационными свойствами. Большое влияние на долговечность материала оказывает старение.

Резинам присущи очень высокие обратимые деформации порядка 1000% и больше (для стали < 1%), в них может происходить перегруппировка структурных элементов в поле межмолекулярного взаимодействия — физическая релаксация и распад и перегруппировка химических связей — химическая релаксация. Резины на основе полярных каучуков имеют замедленную релаксацию. Мягчители ее убыстряют (уменьшая связь между молекулами). Замедляют релаксацию активные наполнители вследствие сорбции молекулярных цепей каучука на частицах наполнителя, и состояние равновесия не наступает (ограничена подвижность молекул, ее жесткость).

Восстановление представляет собой изменение величины деформации во времени после снятия нагрузки с образца; внутренние силы в резине приходят в равновесие медленно, поэтому упругое последствие в статических условиях проявляется длительно. В резине наблюдается остаточная деформация. Восстанавливаемость резины характеризует ее эксплуатационные качества.

Прочность резины зависит от регулярности строения полимера и энергии взаимодействия между звеньями его молекул. Переход в кристаллическое состояние облегчается ориентацией молекулярных цепей при деформации резины. Быстро кристаллизуются в процессе деформации НК, бутилкаучук, хлоропрен и СКИ, для них Ơв == 2 - 3 кгс/мм2 , даже без наполнителей. Кроме прочности при разрыве, для резин определяется сопротивление раздиру — Важная характеристика чувствительности резины к концентрации напряжения1 .

По гистерезисной диаграмме вычисляется полезная упругость резины как отношение работы, возвращенной деформированным образцом, к общей работе, затраченной на эту деформацию (рис. 4).

Рис.4. Диаграмма напряжение — удлинение резины, получаемая в цикле растяжение — восстановление с заданной скоростью деформации:

АБВЕА — работарастяжения;

АБВГДА — работа необратимо рассеянная;

ДГВЕД--- возвращенная работа

А Д

В условиях динамического нагружения (переменные циклические нагрузки) свойства резины определяются упругогистерезисными и усталостно-прочностными характеристиками. Эти свойства необходимо учитывать при применении резины в шинах, муфтах, рессорах, амортизаторах и т.. п., где они являются решающими для хорошей работоспособности, надежности, долговечности. Резины из НК (по сравнению с СКВ) отличаются малым внутренним трением, которое определяет весьма благоприятные гистерезисные свойства.

Усталостно-прочностные свойства резин определяются их утомлением, когда под действием механических напряжений происходит разрушение. Утомлению способствует также воздействие света, теплоты, агрессивных сред и т. п. Последние факторы вызывают старение. Число циклов нагружения, которое выдерживает, не разрушаясь, образец, называется усталостной выносливостью. Усталостному разрушению очень способствует действие озона, вызывающее растрескивание поверхностного слоя, особенно для резин на основе НК, СКИ, СКВ, СКС и др. Почти не подвержены озонному растрескиванию резины на основе бутилкаучука и хлоропренового каучука. По работоспособности при нагревании резины из НК вследствие пониженной химической стойкости даже не превосходят резин из СКВ. Для обеспечения высокой усталостной прочности необходимы высокая прочность, малое внутреннее трение и высокая химическая стойкость резины. При повышенных температурах (150°С) органические резины теряют прочность после 1 -10 ч нагревания, резины на СКТ могут при этой температуре работать длительно. Прочность силоксановой резины при комнатной температуре меньше, чем у органических резин, однако при 200°С прочности одинаковы, а при температуре 250 — 300°С прочность даже выше. Особенно ценны резины на СКТ при длительном нагревании.

Воздействие на резину отрицательных температур вызывает снижение и даже полную утрату высокоэластических свойств, переход в стеклообразное состояние и возрастание ее жесткости в тысячи и десятки тысяч раз.

Старение резины наблюдается при хранении и эксплуатации резиновых изделий под воздействием немеханических факторов. Свет, теплота, кислород воздуха, озон вызывает химические реакции окисления и другие изменения каучука. Механические напряжения могут активизировать эти процессы. Испытание на старение проводят как в естественных, так и в искусственных условиях. Процесс старения по-разному сказывается на резинах. Наихудшие показатели при тепловом старении имеют резины на хлоропреновом каучуке, у резин из СКТ происходит некоторое упрочнение, не меняется прочность резин из СКЭП; по относительному удлинению лучше показатели у резин на основе ненасыщенных каучуков. Следует отметить низкую стойкость к тепловому старению резин из НК.

Физико-механические свойства каучуков и резин даны в табл. 3.

Таблица 3

Физико-механические свойства каучуков и саженаполненных резин

Группа

по назначению

Тип

каучука

Плотность

каучука,

г/см3

Предел

Прочностиприрастяжении,

кгс/мм2

Относи-

тельное

удлинение %

Остаточноеудлинение,% Температура, С

Набухание всмеси

бензин-

бензол

за 24 ч, %

рабочая хрупкости
Общегоназначения НК 0,91-0,92 2,4-3,4 600-700 25-40 80-130

-40— -55

(-62)

Нестойкие
СКБ 0,9-0,92 1,3-1,6 500-600 50-70 80-150

-42

(-68)

СКС 0.919- 0,944 1,9-3,2 500-S30 12-20 80-130 -48
СКИ 3,15 710-880 28 130

(-77)

-58

0,91-0,92
Специальные:
Бензомасло-стойкие Найрит 1,225 2-2,65 600-750 12 100-130 -34 80
СКН 0.943-0.986 2,2-3,30 450-700 15-30

100-130

(до 177)

-48

(-20)

70-20
Тиокол 1,3 -1,4 0,32-0,42 250-430 40-80 60-130 -40 2,4

химически

стойкие

Бутил-

каучук

0,92 1,60-2,40 650-800 30-45 До 130 . -30 — -70
теплостойкие СКТ 1,7-2 0,35-0,80 360. 4 250-316 -74 180
теплохимическстойкие СКФ 1,8 -1,9 0,7-2 200-400 _ 250-316 -40
износостойкие СКУ 2,1-6 350-550 2-28 130 -21— -50

Применяемые в машиностроении резиновые детали подразделяют по назначению на следующие группы: уплотнительные; вибро- и звукоизолирующие и противоударные; силовые (шестерни, корпуса насосов, муфты, шарниры); опоры скольжения (резинометаллические подшипники, подпятники; опоры, ниппели); гибкие компенсационные проставки, трубы для транспортирования жидкости и газа (сильфоны, муфты, патрубки и др.); противоизносные (асфальтоходные башмаки, протекторные кольца, катки и др.); фрикционные детали и инструменты (шлифовальные диски, фрикционные колеса); несиловые и защитные (ковры, ручки, педали и т. д.); декоративные (полосы, шнуры).

Представителями резинотканевых изделий являются напорные рукава для топлива, масла, воды, растворов кислот и щелочей и газов; рукава могут быть гибкими трубопроводами воздушных тормозов. Для увеличения прочности и устойчивости смятию рукава армируют металлической проволокой. Резинотканевые приводные ремни бывают плоскими и клиновыми, последние изготовляют с кордшнуром или кордтканью в несущем слое ремня. Транспортерные ленты применяют для перемещения грузов по горизонтали или под небольшим уклоном. Шины бывают пневматическими, в которых амортизационная способность обеспечивается сжатым воздухом и частично эластическими свойствами шинных материалов, и массивными или цельнорезиновыми, в которых используется только эластичность самого резинового материала.

Клеящие материалы

1. Общие сведения, состав и классификация клеев

Клеями обычно называют коллоидные растворы пленкообразующих полимеров, способные при затвердевании образовывать прочные пленки, хорошо прилипающие к различным материалам.

Клеевые соединения по сравнению с другими видами неразъемных соединений (заклепочными, сварными и др.) имеют ряд преимуществ: возможность соединения различных материалов (металлов и сплавов, пластмасс, стекол, керамики и др.) как между собой, так и в различных сочетаниях; атмосферостойкость и стойкость к коррозии клеевого шва; герметичность соединения; возможность соединения тонких материалов; снижение стоимости производства; экономия массы и значительное упрощение технологии изготовления изделий.

Недостатками клеевых соединений являются относительно низкая длительная теплостойкость (до 350°С), обусловленная органической природой пленкообразующего; невысокая прочность склейки при неравномерном отрыве; часто необходимость проведения склейки с подогревом; склонность к старению. Однако имеется ряд примеров длительной эксплуатационной стойкости клеевых соединений. Новые клеи на основе кремнийорганических и неорганических полимеров обеспечивают работу до 1000°С и выше, однако большинство из них не обладают достаточной эластичностью пленки.

Прочность склеивания зависит от явления адгезии, когезии и механического сцепления пленки с поверхностью склеиваемых материалов. Адгезией (прилипаемостью) называется способность клеевой пленки прочно удерживаться на поверхности склеиваемых материалов.

Для объяснения физико-химической сущности адгезионных явлений предложены следующие теории: адсорбционная, электрическая и диффузионная. Адсорбционная теория рассматривает адгезию как чисто поверхностный процесс, аналогичный адсорбции; пленка удерживается на поверхности материала в результате действия межмолекулярных сил.

В основе электрической теории (работы Б. В. Дерягина и Н. А. Кротовой) лежат электрические силы. Адгезия - результат действия электростатических и ван-дер-ваальсовых сил. Электростатические силы определяются двойным электрическим слоем, всегда возникающим при контакте разнородных тел.

Диффузионная теория, развиваемая С. С. Воюцким, предполагает, что при образовании связи между неполярными полимерами электрический механизм адгезии невозможен, и адгезия обусловливается переплетением макромолекул поверхностных слоев в результате их взаимодиффузии.

Когезия представляет собой собственную прочность пленки. Работа когезии - это работа, затрачиваемая на преодоление сил сцепления между частицами внутри однородного тела Кроме полярных функциональных групп на клеящие свойства полимеров оказывают влияние молекулярная масса и структура макромолекул. Прочность склейки можно повысить путем механического сцепления пленки клея с шероховатой поверхностью материала; для этого перед склейкой часто поверхности деталей фрезеруют; опескоструивают или зачищают наждачной бумагой.

На процесс склеивания влияет природа склеиваемых материалов. Так, полярные материалы требуют применения полярных клеев. Адгезионные свойства металлов различны. По мере убывания этих свойств металлы можно расположить в следующем порядке: сталь, бронза, алюминиевые сплавы, медь, железо, латунь. При склеивании пластиков лучшим клеем является раствор или расплав этого же пластика. Если пластики неполярны и не растворяются в растворителях (полиэтилен, фторопласт-4, полипропилен), то характер их поверхности изменяют механическим или химическим путем.

В состав клеящих материалов входят следующие компоненты: пленкообразующее вещество — основа клея, которое определяет адгезионные, когезионные свойства клея и основные физико-механические характеристики клеевого соединения; растворители, создающие определенную вязкость клея; пластификаторы для устранения усадочных явлений в пленке и повышения ее эластичности; отвердители и катализаторы для перевода пленкообразующего вещества в термостабильное состояние; наполнители для уменьшения усадки клеевой пленки, повышения прочности склеивания и, следовательно, возможности менее точной подгонки поверхности и экономии клеящих материалов.

В качестве пленкообразующего вещества в основном применяют синтетические Смолы, а также каучуки. Наилучшие показатели достигаются при применении в качестве пленкообразующего вещества полярных термореактивных смол (фенолоформальдегидной, эпоксидной и др.). Растворителями служат спирты, ацетон, бензин и др., а наполнителями — порошки, волокна, ткани. В термостойкие клеи в качестве наполнителей вводят А1 (порошкообразный), А12 О3 и SiO2 .

Металлические порошки повышают теплопроводность клеевых соединений, а серебро, медь, никель и графит сообщают пленке токопроводимость.

Классификация клеев. Клеи классифицируют по ряду признаков. Различают следующие клеи: по пленкообразующему веществу — смоляные и резиновые; по адгезионным свойствам — универсальные, склеивающие различные материалы (например, клеи БФ) и с избирательной адгезией (белковые, резиновые); по отношению к нагреванию — обратимые (термопластичные) и необратимые (термостабильные) пленки; по условиям отверждения — холодной склейки и горячей склейки; по внешнему виду — жидкие, пастообразные и пленочные; по назначению — конструкционные силовые и несиловые. Чаще используют классификацию по пленкообразующему веществу. Смоляные клеи могут быть термореактивными и термопластичными. Термореактивные смолы (фенолоформальдегидные, эпоксидные и др.) дают прочные, теплостойкие пленки, применяемые для склейки силовых конструкций из металлов и неметаллических материалов. Клеи, на основе термопластичных смол (поливинилацетата, акрилатов и др.) имеют невысокие прочностные характеристики, особенно при нагревании, и применяются для несиловых соединений неметаллических материалов.

Резиновые клеи, в которых основным пленкообразующим является каучук, отличаются высокой эластичностью и. применяются для склеивания резины с резиной или резины с металлами.

2. Конструкционные смоляные и резиновые клеи

Смоляные клеи. В качестве пленкообразующих веществ этой группы клеев применяют термореактивные смолы, которые отверждаются в присутствии катализаторов и отвердителей при нормальной или повышенной температуре. Клеи холодной склейки, как правило, обладают недостаточной прочностью, особенно при повышенных температурах. При горячей склейке происходит более полное отверждение смолы, и клеевое соединение приобретает прочность и теплостойкость. Теплостойкость повышают также введением минеральных наполнителей. Термостойкие клеи получают на основе ароматических полимеров, содержащих гетероциклы (полибензимидазолов, полиимидов), а также на основе карборансодержащих полимеров. Карбораны представляют собой борорганические соединения общей формулы В„С2 Н„ + 2 , по свойствам они близки к ароматическим системам. В настоящее время созданы карборансодержащие фенольные, эпоксидные, кремнийорганические и другие клеи.

Рассмотрим основные виды клеев. Клеи могут быть получены на основе чистых смол, например резольной, но учитывая что образующийся при склейке резит хрупок, смолу совмещают с каучуком, термопластами и др.

Клеи на основе модифицированных фенолоформальдегидных смол. Это клеи применяют преимущественно для склеивания металлических силовых элементов, конструкций из стеклопластиков и т. п.

Феноло-каучуковые композиции являются эластичными теплостойкими пленками с высокой адгезией к металлам. К этому виду относятся клеи ВК-32-200, ВК-3, ВК-4, ВК-13 и др. Клеевые соединения теплостойки, хорошо выдерживают циклические нагрузки, благодаря эластичности пленки обеспечивается прочность соединения при неравномерном отрыве.

На рис.5 приведена температурная зависимость прочности этих клеев. Клеи водостойки и могут использоваться в различных климатических условиях.

Рис. 5. Зависимость предела прочности при сдвиге

(— ) и равномерном отрыве (- - - - ) клеевыхсоединений на фенолкаучуковых клеях orтемпературы

Фенолополивинилацеталевые композиции наиболее широко используются в клеях БФ. Клеи БФ-2 и БФ-4 представляют собой спиртовые растворы фенолоформальдегидной смолы, совмещенной с поливинилбутиралем (бутваром). Клеи БФ-2 и БФ-4 применяют для склеивания металлов, пластмасс, керамики и других твердых материалов, Теплостойкость клеевых соединений невысокая, водостойкость удовлетворительная.

Более теплостоек клей ВС-10Т, который отличается высокими характеристиками длительной прочности, выносливости и термостабильности при склеивании металлов и теплостойких неметаллических материалов.

Фенолокремнийорганические клеи содержат в качестве наполнителей асбест, алюминиевый порошок и др. Клеи являются термостойкими, они устойчивы к воде и тропическому климату, обладают хорошей вибростойкостью и длительной прочностью. Клеи ВК-18 и ВК-18М способны работать при температуре 500~600°С. Клей ВК - 18М применяют для склеивания инструментов. Он позволяет увеличить стойкость инструмента в 1,5 — 4 раза.

Клей на основе эпоксидных смол. Отверждение клеев происходит при помощи отвердителей без выделения побочных продуктов, что почти не дает усадочных явлений в клеевой пленке.

Отверждение смол можно вести как холодным, так и горячим способом. В результате полярности эпоксидные смолы обладают высокой адгезией ко всем материалам. К клеям холодного отверждения относятся Л-4, ВК-9, КЛН-1, ВК-16, ЭПО. Эпоксидные клеи горячего отверждения ВК-32-ЭМ, К-153, ФЛ-4С, ВК-1 и др. являются конструкционными силовыми клеями. Их применяют для склеивания металлов, стеклопластиков, ферритов, керамики. Клеи ВК-1 и ФЛ-4С используют в клеесварных соединениях. Эпоксидно-кремнийорганические клеи ТКМ-75, ТКС-75, Т-73 применяют для приклеивания режущих частей при изготовлении инструментов.

Для всех эпоксидных клеев характерна хорошая механическая прочность, атмосферостойкость, устойчивость к топливу и минеральным маслам, высокие диэлектрические свойства.

Полиуретановые клеи. Композиции могут быть холодного и горячего отверждения. В состав клея входят полиэфиры, полиизоцианаты и наполнитель (цемент). При смешении компонентов, происходит химическая реакция, в результате которой клей затвердевает. Клеи обладают универсальной адгезией (полярные группы NHCO), хорошей вибростойкостью и прочностью при неравномерном отрыве, стойкостью к нефтяным топливам и маслам. Представителями полиуретановых клеев являются ПУ-2, ВК-5, ВК-11, лейконат. Такие клеи токсичны.

Клеи, модифицированные карборансодержащими соединениями, обладают высокой термостойкостью. Клей ВК-20 выдерживает длительно 350 — 400°С и кратковременно 800°С, имеет высокую длительную прочность.

Клеи на основе кремнийорганических соединений. Эти клеи являются теплостойкими. Кремнийорганические полимеры не обладают высокими адгезионными свойствами вследствие блокирования полярной цепи Si — О органическими неполярными радикалами, поэтому часто эти соединения совмещают с другими смолами. Многие клеи содержат минеральные наполнители. Клеи ВК-2, ВК-8, ВК-15 и др. отверждаются при высокой температуре. Клеи устойчивы к маслу, бензину, обладают высокими диэлектрическими свойствами, не вызываю: коррозии металлов и применяются для- склейки легированных сталей, титановых сплавов, стекло- и асбопластиков, графита, неорганических материалов.

Клеи на основе поликарборансилоксанов обладают стойкостью к термоокислительной деструкции, способны длительно работать при 600°С. кратковременно при 1200°С, имеют высокую адгезию к различным материалам.

Клеи на основегетероциклических полимеров. Полибензимидазольные и полиимидные клеи обладают прочностью, высокой стойкостью к термической, термоокислительной и радиационной деструкции, химически стойки. Клеевые соединения могут работать в течение сотен часов при 300с С, а также при криогенных температурах. Полибензимидазольный клей выпускают под маркой ПБИ-1K, полиимидный — СП-6. Этими клеями можно склеивать коррозионно-стойкие стали, титановые сплавы, стеклопластики и различные композиционные материалы.

Еще более теплостойкие клеи (фосфатные, силикатные, керамические, металлические) получают на основе неорганических соединений. Некоторые из них могут выдерживать температуру до 3000°С. Однако по прочности они уступают смоляным клеям.

Алюмохромсиликатофосфатные композиции обеспечивают достаточную прочность соединения при 1250 —1500°С.

Резиновые клеи. Резиновые клеи предназначены для склеивания резины с резиной и для крепления резины к металлу, стеклу и др. Резиновые клеи представляют собой растворы каучуков или резиновых смесей в органических растворителях.

В состав клеев горячей вулканизации входит вулканизующий агент. Склейку проводят при температуре вулканизации 140—150"С. Соединение получается прочным, подчас не уступающим прочности целого материала.

При введении в состав клеевой композиции активаторов и ускорителей получают самовулканизующийся клей (процесс вулканизации протекает при нормальной температуре). Для увеличения адгезии вводят синтетические смолы (пример такой композиции клей 88Н). Соединение получается достаточно прочное. Недостатком клея 88Н является нестойкость пленки к керосину, бензину и минеральным маслам. Клей 88НП образует соединение, стойкое к морской воде. Хорошей склеивающей способностью и стойкостью к действию масел и топлив обладают клеи 9М-35Ф, ФЭН-1 и др.

В случае необходимости склеивания теплостойких резин на основе кремнийорганического каучука и приклеивания их к металлам применяют клеи, содержащие в своем составе кремнийорганические смолы (клей КТ-15, КТ-30, MAC-IB). Клеевые соединения могут работать при температурах от -60 до 200-300°С.

Клей-герметик Виксинт применяется для склеивания резин, стекла, полиимидной пленки, стеклянных тканей.

3. Свойства клеевых соединений

Клеевые соединения наиболее эффективно работают на сдвиг (τ = 0,6 - 3 кгс/мм2 ). В клеевых соединениях может происходить равномерный и неравномерный отрыв и отдирание (отслаивание) у кромки шва.

В случае неравномерного отрыва прочность соединения в несколько раз

меньше, чем при равномерном отрыве. При сжатии прочность клея больше в 10—100 раз, чем при растяжении.

Прочность склейки существенно зависит от температуры, причем большое влияние оказывает вид клея и характер напряженного состояния. Коэффициент Пуассона клея μ = 0,3; модуль сдвига G = О,38Е; модуль упругости Е = 200 - 400 кгс/мм2 ; удлинение отвержденной пленки около 3,5%.

Теплостойкость клеев различна. Фенолокаучуковые и эпоксидные клеи работают длительно (до 30000 ч) при температуре 150°С и выше. Полиароматические и элементоорганические клеи выдерживают температуру 200 —400с С в течение 2000 ч; карборансодержащие клеи — до 600°С в течение сотен часов.

Клеящие материалы со временем «стареют». В условиях эксплуатации и при хранении склеенных изделий наступает охрупчивание клея, которое протекает тем быстрее, чем выше температура. Увеличение жесткости клея вызывает возрастание концентрации напряжений, вследствие чего прочность падает. Наиболее высокой термостабильностью обладают полиимидные и полибензимидазольные клеи. Некоторые клеи при действии переменных температур теряют 8 — 20% прочности.

Выносливость — число циклов до разрушения клеевого шва — зависит от вида клея. В среднем при несимметричном цикле нагрузки число циклов нагружения 106 —107 .

Таблица 4

Физико-механические свойства конструкционных смоляных клеев

Тип клея Пределпрочности ,кгс/мм2

Теплостойкость,

С

Водостойкость (сравнительная)

Температура склеивания, °С

при сдвиге

при равномерном

отрыве

при неравномерном

отрыве

Фенолоформальдегидный 1,3-1,5 - __ 60-100 Хорошая

20 или

50-60

Фенолкаучуковый 1,4-2,5 1.7-2,0 0,30-0,50 200-350 Отличная 165-205

Фенолополивинилацеталевые

1,7-1,8 3,6-6 0,08-0,12 200-350 Хорошая 180

Фенолополивинил-

бутиральный

2,2 3,2-3,5 0,30 60-80 Удовлетворительная 120-140
Фенолокремнийорганические 1,2-1,7 2,8-3,0 - 250-600 Хорошая 180-200
Эпоксидный 1-3 1-6 0,1-0,15 60-350 Удовлетворительная

20 или

80-210

Полиуретановый . 1,1-2,0 2,2 – 3,5 0,25 – 0,30 60-100 Хорошая 18-25
Полиуретановые карборансодержащие 1,0-2,0 - _ 350-1000 »

или 105

150

Кремнийорганический 0,90-1,75 1,5-2,2 0,08-0,20 350-1200 Удовлетворительная 180-270
Карбамидный 1,3 60 Низкая 15-30
Полибензимидазольный 1,5 — 3,0 _ _ 350-540 Отличная 150-400
Полиимидный 1,5-3,0 300-375 » 180-260

Лакокрасочные материалы

1. Общие сведения, состав и классификация лакокрасочных материалов

Лакокрасочные материалы принадлежат к группе пленкообразующих материалов После нанесения в жидком состоянии на окрашиваемые поверхности они образуют пленки. Высохшие пленки называются покрытиями. Лакокрасочные материалы предназначены для защиты металлов от коррозии, а неметаллических материалов (древесины, пластмасс и т.д.) -от увлажнения и загнивания; они сообщают поверхности специальные свойства (электроизоляционные, теплозащитные и другие) и придают изделиям декоративный внешний вид.

Защита изделий от влияния внешней среды лакокрасочными покрытиями является наиболее доступной и широко применяется в машиностроении С помощью защитных покрытий срок эксплуатации аппаратуры, оборудования различных металлоконструкций увеличивается в несколько раз. К лакокрасочным материалам предъявляются определенные требования- высокая адгезия к защищаемым поверхностям, теплостойкость и химическая устойчивость, водонепроницаемость, светостойкость, гладкость твердость и эластичность пленки, хорошие защитные свойства.

Состав и классификация лакокрасочных материалов. Компонентами лакокрасочных материалов являются пленкообразующие вещества; смолы для увеличения адгезии, придания пленке твердости и блеска; растворители (скипидар, спирты, ацетон) и разбавители (бензол) для растворения пленкообразующего и других компонентов; пластификаторы (дибутилфталат и др) сохраняющие эластичность покрытия, снижающие его воспламеняемость и улучшающие морозостойкость; отвердители термореактивных пленкообразующих (амины); пигменты и красители - придающие определенный цвет и обладающие защитными свойствами; наполнители (тальк, каолин) - для повышения вязкости материала и снижения блеска покрытия; специальные добавки для тропикостойкости, стабилизации свойств

В качестве пленкообразующих веществ применяют в основном синтетические смолы, эфиры целлюлозы, реже высыхающие растительные масла.

По составу лакокрасочные материалы подразделяют на лаки, эмали, грунты шпатлевки; по пленкообразующему веществу они могут быть смоляными, эфироцеллюлозными (нитроцеллюлозные и этилцеллюлозные) и маслосодержащими (битумные, канифольные).

Лаки являются растворами пленкообразующих веществ в растворителях иногда с добавками пластификаторов, ускорителей, стабилизаторов (в составе лака обязательно присутствует смола). Лаки предназначены для защиты поверхности изделия от воздействия внешней среды.

Эмали состоят из лака и пигмента. Для получения не глянцевых, а матовых покрытий в эмали вводят наполнитель. Пигменты придают эмали цвет и некоторые специфические свойства, например белые пигменты (ZnO, TiO2 ) — атмосферостойкость и водоупорность; алюминиевая пудра — стойкость к действию влаги и ультрафиолетовых лучей; сажа — токопроводимость и т. д.

Грунты защищают металл от коррозии и увеличивают адгезию последующих слоев. В состав грунта входят лак и пигмент, обладающий защитными свойствами. В зависимости от вида пигмента грунты подразделяют на следующие группы: содержащие соли хромовой кислоты, цинковый и стронциевый крон (образующие окисные пленки на металле); содержащие свинцовый или железный сурик (пассивирующие грунты); содержащие цинковую пыль (протекторные грунты) и инертные пигменты (соединения титана и т. д.), создающие изолирующие покрытия.

Хроматные грунты применяют для защиты магниевых и алюминиевых сплавов. Свинцовый сурик образует на поверхности металла гидрат закиси железа. Эти грунты применимы для защиты стальных деталей.

Защитное действие цинка основано па его более электроотрицательном потенциале по отношению к железу. Эти грунты применяют для защиты стальных деталей, работающих во влажных условиях.

Для защиты стальных деталей применяют также фосфатирующие грунты. Такой грунт реагирует с поверхностью стальных деталей и образует на стали фосфатно-хроматную пленку сложного состава.

Шпатлевки предназначены для выравнивания неровностей на поверхности изделий перед окраской. В состав шпатлевок входят лак, пигмент и наполнитель. Шпатлевки наносят на предварительно загрунтованную поверхность.

Для надежной защиты поверхности изделий в большинстве случаев применяют многослойное покрытие, состоящее из слоев разного назначения, называемое системой покрытия.

Непосредственно на деталь наносится грунт, затем шпатлевка, далее следует эмаль и покровный лак. Число слоев обычно составляет 2 — 6, а иногда и 14.

Смоляные термопластичные лакокрасочные материалы. Из термопластичных смоляных материалов получили широкое распространение перхлорвиниловые и акриловые. Перхлорвиниловые эмали (ХВ, ХС) применяют для окраски металлов, древесины, бетона. Покрытия негорючи, водоустойчивы, химически стойки, могут работать в контакте с минеральным маслом и топливом, не поддаются действию тропических условий, имеют хорошие электроизоляционные свойства. Недостатки покрытий: невысокая адгезия к металлам, отсутствие глянца, низкая теплостойкость (60 — 90°С), неприятный запах.

Материалы на основе акриловых смол термопластичны, но более теплостойки и дают покрытия эластичные, стойкие к ударным нагрузкам, с хорошей адгезией к металлам. Акриловые эмали (АК и АС) могут работать в условиях 98-100%-ной влажности при температуре 55-60°С. При нанесении на эпоксидный грунт покрытие сохраняет защитные свойства в течение 3 — 6 лет.

Покрытия на основе термореактивных смол. Алкидные материалы вырабатывают на основе глифталевой (ГФ) и пентафталевой (ПФ) смол, часто модифицированных растительными маслами. Покрытия обладают высокой твердостью, прочностью, удовлетворительной адгезией к различным материалам. При введении алюминиевой пудры покрытия выдерживает длительно температуру 120°С и кратковременно температуру до 300°С. К недостаткам алкидных покрытий, относится склонность к старению, недостаточная устойчивость к условиям тропического климата и щелочным средам.

Эпоксидные лакокрасочные материалы на основе эпоксидных смол и их модификаций с различными отвердителями дают покрытия ЭП, обладающие хорошей адгезией к металлам и неметаллическим материалам, значительной твердостью, химической стойкостью к различным средам, в том числе к щелочным и, высокими электроизоляционными свойствами. Покрытия при сушке не дают усадки и стойки к колебаниям температуры.

Полиэфирным покрытиям присуща большая твердость, сильный блеск, удовлетворительная, прочность на истирание. Однако они плохо сопротивляются ударным нагрузкам и малоэластичны; используются главным образом при окраске деревянных (и бетонных) поверхностей, адгезия полиэфирных лаков к металлам невысокая.

Полиуретановые лаки, эмали, грунты имеют очень хорошую адгезию к различным материалам, хорошо сопротивляются истиранию, эластичны, атмосферостойкие, газонепроницаемы, могут работать в контакте с водой, маслами, бензином и растворителями, являются хорошими диэлектриками. Недостатком этих материалов, ограничивающих их применение, является токсичность.

Наиболее теплостойки лакокрасочные материалы на основе кремнийорганических полимеров (КО). Покрытия стойки к влаге, окислению, озону, солнечному свету и радиации, химически инертны, хорошие диэлектрики. Однако они имеют невысокую адгезию к различным материалам и требуют горячей сушки (200°С). Кремнийорганические лаки и эмали используют в основном в качестве электроизоляционных материалов. Модифицированные кремнийорганические лаки и эмали защищают металлические поверхности от длительного воздействия высоких температур.

Полиимидные покрытия теплостойки, выдерживают тепловые удары от - 196 до + 340°С. Покрытия прочные, устойчивы к воздействию растворителей и кислот, стойки к радиации и обладают диэлектрическими свойствами. Получение этих покрытий требует высокой температуры и тщательного соблюдения технологии.

2. Сравнительные свойства лакокрасочных покрытий

По условиям эксплуатации лакокрасочные покрытия подразделяют на стойкие внутри помещения; атмосферостойкие; химически стойкие; водостойкие; термостойкие; масло- и бензостойкие и электроизоляционные. Термостойкость (в°С) различных лакокрасочных покрытий приведена ниже:

Нитроцеллюлозные (НЦ)До 80,

Перхлорвиниловые (ХВ)80 — 90'

Эпоксидные (ЭП) 150-200

Алкидные (ГФ, ПФ) - 150-300

Полиуретановые (УР) 180

Акриловые (АК)180

Кремнийорганические (КО)".300-600 (1000, 1 мин)

Полиимидные300, (400, 2-3 ч)

Древесные материалы

Древесина с давних времен используется в качестве конструкционного материала в различных отраслях промышленности и применяется как в натуральном виде, так и в виде разнообразных древесных материалов.

К достоинствам древесины как конструкционного материала относятся достаточно высокая механическая прочность и небольшая объемная масса и, следовательно, высокая удельная прочность, хорошее сопротивление ударным и вибрационным нагрузкам. Теплофизические свойства древесины характеризуются малой теплопроводностью и в 2 — 3 раза меньшим, чем у стали, температурным коэффициентом линейного расширения. Древесина имеет высокую химическую стойкость к ряду кислот, солям, маслам, газам. Важными свойствами древесины являются ее способность к склеиванию, возможность быстрого соединения гвоздями, шурупами, легкость механической обработки и гнутья.

Наряду с указанными достоинствами древесина обладает рядом недостатков, ограничивающих ее применение как конструкционного материала. Можно отметить следующие недостатки: гигроскопичность, которая является причиной отсутствия у деталей из древесных материалов стабильности формы, размеров и прочностных свойств, меняющихся с изменением влажности; склонность к поражению грибковыми заболеваниями; отсутствие огнестойкости; низкий модуль упругости; анизотропия механических свойств, которые в силу волокнистого строения древесины различны в разных направлениях действия сил; неоднородность строения, в результате которой свойства материала различны не только в пределах одной породы; но в пределах одного ствола.

1. Основные сведения о строении древесины

Древесина состоит из органических веществ: 43 — 45% целлюлозы (С6 Н10 О5 ), 19 — 29% лигнина, остальное — низкомолекулярные углеводы и другие компоненты. Свойства древесины обусловливаются ее строением. Так как древесина является волокнистым материалом, ее строение изучают по трем разрезам: торцовому (поперечному), перпендикулярному к волокнам; радиальному, проходящему через ось ствола, тангентальному, идущему вдоль ствола на некотором расстоянии от него (рис. 6).

Рис. 6. Основные разрезы ствола дерева:

1 — поперечный или торцовый;

2 — радиальный;

3 — тангентальный

Строение древесины, ширина годичных колец, содержание летней зоны древесины обусловливают механическую прочность как хвойных, так и лиственных пород. На свойства древесных материалов влияет наличие в древесине различных пороков.

Пороками древесины называются отклонения от нормального строения, а также повреждения микологического и механического характера. Пороки снижают физико-механические свойства древесины. В конструкционных они допускаются с ограничениями, предусмотренными техническими условиями. На механические свойства здоровой древесины влияют сучки, трещины, наклон волокон (косослой).

К паразитным порокам относятся грибковые (микологические) повреждения древесины. Для развития грибов требуются определенные условия; наиболее благоприятны для них температура 2 —40С, влажность 30 — 60% и наличие воздуха, без которого развитие гриба невозможно. В результате грибкового поражения древесина разрушается, превращаясь в труху, гниль. При неправильном хранении древесины часто возникает синева, которая быстро распространяется и проникает в глубь материала. Синева существенного влияния на физико-механические свойства древесины не оказывает, однако при сильном развитии может вызвать поражения более опасными грибами.

Повреждения насекомыми (червоточина) встречаются в древесине всех пород. Наличие червоточины влияет на сортность древесины.

2. Свойства древесины и защита древесины от увлажнения, загнивания и воспламенения

Физические свойства. Для древесины как конструкционного материала основное значение имеют влажность, изменяемость размеров, формы, объемная масса.

Влажностью древесины называется количество воды, заключающейся в ней, выраженное в процентах. Влажность определяется по формуле

m — mo

W= ————·100%,

m0

где m — масса влажного образца при данной влажности в г; m0 — масса образца в абсолютно сухом состоянии в г (за m0 принимается масса образца, высушенного при 100 + 5°С).

Вода, содержащаяся в древесине, бывает двух видов: свободная (капиллярная) вода, заполняющая внутренние пустоты, и связанная (гигроскопическая), находящаяся в клеточных оболочках. Таким образом, влажность древесины складывается из влаги связанной и свободной. При высыхании дерево теряет сначала свободную воду, а затем начинает терять связанную воду.

Состояние древесины, при котором в ней имеется только связанная влага, называется точкой насыщения волокон. Для различных древесных пород максимальное количество связанной влаги колеблется от 23 до 30%. Свежесрубленной древесине соответствует влажность 50 — 100%; в древесине, пролежавшей долгое время на воздухе (воздушно-сухой), устанавливается влажность 10 — 20%, в комнатных условиях (комнатно-сухая древесина) — влажность 7 —10%, а для абсолютно сухой древесины влажность нулевая. Влажность, отвечающая условиям производственного помещения, носит название производственной влажности. За стандартную влажность древесины принята влажность 15%, которая представляет собой среднюю влажность воздушно-сухой древесины. Все свойства древесины для возможности сравнения устанавливаются при стандартной влажности 15%.' Производственная, влажность должна быть равна эксплуатационной или на 2% ниже (иначе древесина будет усыхать).

Изменение размеров и формы древесины связано с изменением ее влажности. Эти изменения выражаются в усушке, разбухании и короблении. При высыхании древесины из нее вначале удаляется свободная влага, при этом размеры клеток не изменяются (уменьшается только масса); с момента точки насыщения волокна стенки волокон древесины теряют связанную влагу и сокращаются в размерах.

Усушкой древесины называется уменьшение линейных размеров и объема древесины при высыхании (выражается в процентах). Усушка зависит от направления: так, наибольшая усушка происходит в тангентальном направлении, наименьшая — вдоль волокон.

Для определения усушки практически пользуются коэффициентом усушки К, который представляет собой среднюю усушку при изменении влажности на 1%, и определяется по формуле

Y

K= ——

W

Для различных пород полная усушка в радиальном направлении Ур = = 3-5%, в тангентальном Уг = 6 - 10%. Коэффициенты усушки в радиальном направлении Kр = 0,09 ~0,31%, в тангентальном Кт = 0,17 — 0,43%; коэффициент объемной усушки Ко = 0,32 - 0,7%. Усушка вдоль волокон составляет 0,1—0,35% и практически не учитывается.

Усушка представляет собой отрицательное явление, во-первых, потому, что ее необходимо учитывать при изготовлении деталей, и, во-вторых, она служит причиной появления в древесине внутренних напряжений, вызывающих трещины и коробления (рис.7).

Древесина разных пород имеет одинаковый химический состав, поэтому плотность вещества, образующего стенки клеток, принимается равной 1,54 г/см3 . Для практических целей важно знать объемную массу у, которая зависит от влажности материала и коэффициента объемной усушки. Значение у15 древесины составляет 0,34-0,98 г/см3 . Более легкими породами являются сосна, ель, пихта, липа, осина, ольха; очень тяжелыми -граб, груша, самшит. Чем больше объемная масса, тем плотнее древесина и тем лучше она сопротивляется нагрузкам.

Рис. 7. Виды коробления пиломатериалов:

1 — изменение формы поперечного сечения брусков; 2 — поперечное коробление досок; 3 —

продольное коробление доски; 4 - коробление косослойной доски

Механические свойства древесины. Древесина анизотропна, и ее свойства зависят от влажности и других факторов. В связи с этим показатели механических свойств для возможности их сравнения и применения в расчете деревянных деталей на прочность относят к древесине, не имеющей пороков и при одинаковой влажности 15%.

Механические свойства наиболее распространенных пород древесины при W= 15% приведены в табл. 5.

Средние значения пределов прочности древесины вдоль волокон находятся в пределах: Ơс от 3,42 до 5,49 кгс/мм2 ; Ơв от 7,61 до 16,1 кгс/мм2 (в отдельных случаях до 27 кгс/мм2 ); Ơв — поперек волокон ниже в 6 — 30 раз, чем вдоль. Сопротивление сдвигу в плоскости волокон, (скалывание) невелико и составляет 1/6-1/8 Ơс (продольное направление), Ơизг в 1,5-2 раза

Таблица 5

Основные физико-механические свойства наиболее распространенных пород древесины(при -влажности 15%)

Порода

Предел прочности, кгс/мм2

Объемная масса

при сжатии

вдоль волокон

При растяжении вдоль волокон

при

статическом изгибе

при скалывании

вдоль волокон

Удельная работа при ударном

Изгибе кгс/см2

Твердость, кгс/мм2

Модуль упругости вдоль волокон, 103 , кгс/мм-

Радиальная

Тан

ген

таль

ная

торцовая

при сжатии

при растяжении

при изгибе

ра-ди-аль-ная

Тангена льная

Лиственница

0,68 5,4 12,2 9.84 0,94 0,82 0.27 2,80 2,78 4,03 1.40 1,45 1,47

Сосна

0.51 4,1 10,0 7,58 0,69 0,67 0,20 2,17 2 23 2,62 1,17 1,17 1,22

Ель

0,46 3.9 10.6 7,17 0,6 0,62 0,20 1,73 1,68 2,41 1,42 1,43 1,06

Кедр сибирский

0.44 3,6 8.20 6,48 0,6 0,64 0,14 2,03 -

Пихта

0.39 3,4 7,61 6,07 0,5 0,57 0.14 1,67 1,64 2,48 1,25 1,25 1,01

Лиственные

Граб 0,81 5,3 13.4 12,1 1,41 1.77 0,48 7.01 7.17 8,25~ _ _ _
Дуб 0,76 5,1 - 8,91 1.10 1,25 0,46. 5.36 5.68 6,53 1,40 1,40 1.51
Клен 0,70 5,2 _ 10,5 1.13 1.29 0.37 5,06 5.37 6,90
Ясень 0,69 4,9 13.9 10,8 1,2 1.22 0.43 5,34 6.09 7,32 1,50 1,40 1.28
Бук 0,68 4,7 11,7 9.53 1,06 1,32 0,39 3,94 4,03 5,56
Береза 0,64 4,6 16,1 9,67 0..8 1,02 0,45 3,36 3,00 4,23 1,58 1,81 1.51
Липа 0,50 3,9 11.5 7,75 0,7 0.74 0,28 1,56 1.63 2 34 _
Осипа 0.50 3,7 12.0 6,86 0.5 0,78 0.41 1,75 1,83 2,41 1,26 1,54 1,10

больше, чем ас . Модули упругости при растяжении и сжатии примерно равны, в продольном направлении их значение в 10 — 30 раз больше, чем в поперечном. Вдоль волокон £ = = (1,17 ~ 1,58) 103 кгс/мм2 .

При ударных нагрузках сопротивление ударному изгибу вязких пород (ясеня, дуба) в 1,5 — 3 раза выше, чем хрупких хвойных пород (сосны, ели,

пихты). Прочность древесины зависит от скорости нагружения: чем медленнее прикладывается нагрузка, тем меньше величина предела прочности. Со временем сопротивление древесины постепенно уменьшается и достигает некоторого предела долговременного сопротивления, при котором деревянная деталь может работать неопределенно долгое время (рис. 234). Для всех видов напряженного состояния древесины величина длительного сопротивления принимается равной 2/3 предела прочности.

При вибрационных нагрузках необходимо учитывать усталость (или выносливость) древесины. Предел выносливости сте всегда меньше статического предела прочности аст . Отношение ств /стС т при изгибе составляет для разных пород 0,24 — 0,38:

Защита древесины от увлажнения, загнивания и воспламенения. В условиях эксплуатации или хранения древесины на открытом воздухе ее влажность может значительно увеличиваться и вызывать загнивание деревянных элементов. Для борьбы с этим недостатком применяют гидроизоляционные прокладки, лакокрасочные покрытия и антисептирование.

Антисептики представляют собой водные растворы минеральных солей (фтористого натрия, хлористого цинка, медного купороса и др.) и спиртовые растворы оксидифенила и ртутноорганических соединений. Антисептирование производят путем промазки, опрыскивания, пропитки под давлением.

Древесина; легко воспламеняется от огня (точка воспламенения 330-470°С). Для повышения ее огнестойкости (хотя сделать древесину совсем несгораемой нельзя) применяют ряд способов. Первый и наиболее эффективный способ защиты — пропитка химическими веществами — антипиренами, второй - окраска огнезащитными красками. В качестве антипиренов используют аммониевые соли и соли фосфорной кислоты или борной кислоты. Огнезащитные краски должны быть негорючими и нетеплопроводными. К ним относятся силикатные краски на основе жидкого стекла и перхлорвиниловые лакокрасочные покрытия.

3. Разновидности древесных материалов

Материалы из натуральной древесины применяют в виде пиломатериалов и заготовок. В зависимости от размеров поперечного сечения различают брусья, ширина и толщина которых свыше 100 мм; бруски шириной не более двойной толщины; доски при ширине более двойной толщины (тонкие узкие доски называются планками).

Пиломатериалы хвойных пород применяют более широко, поскольку они обладают высокой прочностью, меньше подвержены загниванию, особенно сосна; из лиственных пород дуб и ясень хорошо поддаются гнутью; бук и береза служат их заменителями. Хвойные и твердые лиственные породы применяют для силовых нагруженных деталей. Мягкие породы (липа) являются несиловыми материалами. Хвойные пиломатериалы используют в судостроении, в автотранспорте (детали грузовых автомобилей), в конструкциях грузовых железнодорожных вагонов, сельскохозяйственных машин и т. д. Заготовки из древесины используются для тех же целей и моделей.

Шпон — широкая ровная стружка древесины, получаемая путем лущения или строгания. Толщина листов шпона от 0,55 до 1,5 мм. Шпон является полуфабрикатом для изготовления фанеры, древесных слоистых пластиков и выклейки гнутых деталей. Шпон с красивой текстурой (дуб, бук и др.) используется в качестве облицовочного материала для изделий из древесины.

Фанера — листовой материал, получаемый путем склейки слоев шпона. Толщина фанеры от 1 до 12 мм, более толстые материалы называют плитами. В зависимости от склеивающего шпон клея и степени водостойкости фанера выпускается следующих марок: ФСФ на фенолоформальдегидном клее с повышенной водостойкостью, ФК — на карбамидном и ФБА на альбуминоказеиновом клеях со средней водостойкостью и ФБ на белковых клеях ограниченной водостойкости. Березовая фанера имеет вдоль волокон рубашек Ơв = 6,5 -г 8 кгс/мм2 .

Прессованная древесина получается при горячем прессовании брусков, досок, заготовок, при этом она подвергается специальной термообработке в уплотненном состоянии.

Прессованная древесина имеет следующие свойства: объемную массу 1,1-1,42 г/см3 , предел прочности вдоль волокон при растяжении 14-23 кгс/мм2 , при сжатии 9-13 кгс/мм2 , при изгибе 15-20 кгс/мм2 , ударную вязкость 60-80 кгс-см/см2 .

Прессованная древесина является заменителем черных и цветных металлов и пластмасс. Она широко применяется для изготовления деталей машин, работающих при ударных нагрузках (кулачки, сегменты зубчатых передач, подшипники, втулки и т. д.). Вкладыши из древесины по сравнению с бронзовыми имеют вдвое меньший износ, снижается расход смазочного масла.

Древесностружечные плиты изготовляют горячим прессованием древесной стружки со связующим. Плиты выпускают однослойными (ПС-1, ПТ-1), трехслойными (ПС-3, ПТ-3) и облицованными шпоном, фанерой, бумагой (ЭС, ЭМ).

. Древесностружечные плиты легкие, имеют объемную массу 0,35-0,45 г/см3 , Ơи = 0,5 кгс/мм2 , обладают теплоизоляционными свойствами [λ = = 0,045 ккал/(м · ч°С)]. Для тяжелых и сверхтяжелых плит объемная масса достигает 0,75—1,1 г/см3 и Ơ„ = 2,1 - 5,3 кгс/мм2 . Древесностружечные плиты применяют для пола и бортов грузовых машин и прицепов, в вагоностроении, в строительстве, для производства мебели и т. д.

Древесноволокнистые плиты изготовляют из древесных волокон (размельченной древесины), иногда с добавками связующих составов. Под действием высокой температуры и большого давления древесные волокна спрессовываются в равнопрочный материал. Плиты подразделяют на мягкие пористые (М-4, М-12, М-20), полутвердые (ПТ-100), твердые (Т-350 Т-400) и сверхтвердые (СТ-500). В обозначении марки плит цифры означают Ơ„ в кгс/см2 . В промышленности выпускают также акустические плиты, имеющие коэффициент звукопоглощения 0,2-0,3 при частоте колебаний 300 Гц и 0,4-0,5 при 1000 Гц. Древесноволокнистые плиты применяют для облицовки пассажирских вагонов, внутренней отделки автобусов в радиотехнической промышленности, в строительстве и т.д.

Неорганические материалы

Неорганическим материалам присущи негорючесть, высокая стойкость к нагреву, химическая стойкость, неподверженность старению, большая твердость, хорошая сопротивляемость сжимающим нагрузкам. Однако они обладают повышенной хрупкостью, плохо переносят резкую смену температур, слабо сопротивляются растягивающим и изгибающим усилиям и имеют большую плотность По сравнению с органическими полимерными материалами.

Основой неорганических материалов являются главным образом окислы и бескислородные соединения металлов. Поскольку большинство неорганических материалов -содержит различные соединения кремния с другими элементами, эти материалы объединяют общим названием силикатные. В настоящее время применяют не только соединения кремния, но и чистые окислы алюминия, магния, циркония и др., обладающие более ценными техническими свойствами, чем обычные силикатные материалы.

Неорганические материалы подразделяют на неорганическое стекло, стеклокристаллические материалы — ситаллы и керамику.

1. Неорганическое стекло

Неорганическое стекло следует рассматривать как особого вида затвердевший раствор — сложный расплав высокой вязкости кислотных и основных окислов.

Стеклообразное состояние является разновидностью аморфного состояния вещества. При переходе стекла из расплавленного жидкого состояния в твердое аморфное в процессе быстрого охлаждения и нарастания вязкости беспорядочная структура, свойственная жидкому состоянию, как бы «замораживается;). В связи с этим неорганические стекла характеризуются неупорядоченностью и неоднородностью внутреннего строения.

Стеклообразующий каркас стекла представляет собой неправильную пространственную сетку, образованную кремнекислородными тетраэдрами [SiO4 ]4- . На рис. 8 (а) показана такая сетка кварцевого стекла. При частичном изоморфном замещении кремния в тетраэдрах, например, на алюминий или бор, образуется структурная сетка алюмосиликатного [Six AlO4 ]z - ~ или боросиликатного [Six BO4 ]z - стекол. Ионы щелочных (Na, К) и щелочноземельных (Са, Mg, Ва) металлов называются модификаторами; в структурной сетке стекла они располагаются в промежутках тетраэдрических группировок (рис. 8(б)). Введение Na2 O или других модификаторов разрывает прочные связи Si — О — Si и снижает прочность, термо- и химическую стойкость стекла, одновременно облегчая технологию его производства. Большинство стекол имеет рыхлую структуру с внутренней неоднородностью и поверхностными дефектами.

Рис. 8. Структура неорганического стекла:

а - кварцевого;

6 - натрийсиликатного

В состав неорганических стекол входят стеклообразующие окислы кремния, бора, фосфора, германия, мышьяка, образующие структурную сетку и модифицирующие окислы натрия, калия, лития, кальция, магния, бария, изменяющие физико-химические свойства стекломассы. Кроме того, в состав стекла вводят окислы алюминия, железа, свинца, титана, бериллия и др., которые самостоятельно не образуют структурный каркас, но могут частично замещать стеклообразующие и этим сообщать стеклу нужные технические характеристики. В связи с этим промышленные стекла являются сложными многокомпонентными системами.

Стекла классифицируют по ряду признаков: по стекло образующему веществу, по содержанию модификаторов и по назначению.

В зависимости от химической природы стекло образующего вещества стекла подразделяют на силикатные (SiO2 ),

алюмосиликатные (А12 О3 —SiO2 ),

боросиликатные (В2 О3 — SiO2 ),

алюмоборосиликатные (А12 ОЭ — В2 О3 — SiO2 ),

алюмофосфатные (А12 О3 —РгО5 ) и др.

По содержанию модификаторов стекла бывают щелочными (содержащими окислы Na2 O, К2 О), бесщелочными и кварцевыми. По назначению все стекла подразделяют на технические (оптические, светотехнические,, электротехнические, химико-лабораторные, приборные, трубные); строительные (оконные, витринные, армированные, стеклоблоки) и бытовые (стеклотара, посудные, бытовые зеркала и т. п.).

Технические стекла в большинстве относятся к алюмоборосиликатной группе и отличаются разнообразием входящих окислов. Стекла выпускаются промышленностью в виде готовых изделий, заготовок или отдельных деталей!

Общие свойства стекла. При нагревании стекло плавится в некотором температурном интервале, который зависит от состава. Для промышленных силикатных стекол температура стеклования te = 425 - 600"С, температура размягчения tp лежит в .пределах 600 — 800с С. В интервале температур между t0 и tр стекла находятся в высоко вязком пластическом состоянии. При температурах выше tp (1000—1100°С) проводятся все технологические процессы переработки стекломассы в изделия.

Свойства стекла, как и всех аморфных тел, изотропны. Плотность колеблется от 2,2 до 6,5 г/см3 (с окислами свинца, бария —до 8 г/см3 ).

Механические свойства стекла- характеризуются высоким сопротивлением сжатию (50 — 200 кгс/мм-2 ), низким пределом прочности при растяжении (3 — 9 кгс/мм2 ) и изгибе (5 —15 кгс/мм2 ).. Модуль упругости высокий (4500 до 104 кгс/мм2 ), коэффициент Пуассона μ. = 0,184 -0,26. Твердость стекла, как и других неорганических материалов, часто определяется приближенным методом царапания по минералогической шкале Мооса и равна 5—7 единицам (за 10 единиц принята твердость алмаза, за единицу — талька). Ударная вязкость стекла низкая, оно хрупкое {а = 1,54-2,5 кгс-см/см2 ). Более высокие механические характеристики имеют стёкла бесщелочного состава и кварцевые.

Важнейшими специфическими свойствами стекол являются их оптические свойства: светопрозрачность, отражение, рассеивание, поглощение и преломление света. Обычное неокрашенное листовое стекло пропускает до 90%, отражает примерно 8% и поглощает около 1% видимого и частично инфракрасного света; ультрафиолетовые лучи поглощает почти полностью. Кварцевое стекло является прозрачным для ультрафиолетовых лучей. Коэффициент преломления стекол составляет 1,47 — 1,96, коэффициент рассеяния (дисперсии) находится в интервале от 20 до 71. Стекло с большим содержанием РЬО поглощает рентгеновские лучи.

Термостойкость стекла характеризует его долговечность в условиях разных изменений температуры. Она определяется разностью температур, которую стекло может выдержать без разрушения при его резком охлаждении в воде (0°С). Коэффициент линейного расширения а стекла составляет от 5,6-10" 7 1/°С (кварцевое) до 90-10~7 1/°С (строительное), коэффициент теплопроводности—от 0.57 до 1,3 ккал/(м-ч°С). Для большинства видов стекол термостойкость колеблется от 90 до 170°С, а для кварцевого стекла она составляет 800 — 1000°С. Химическая стойкость стекол зависит от образующих" их компонентов: окислы SiO2 , ZrO2 , TiO2 , B2 O3 , AI2 O3 , CaO, MgO, ZnO обеспечивают высокую химическую стойкость, а окислы Li2 O, Na2 O, K2 O, BaOu РЬО, наоборот, способствуют химической коррозии стекла. Механическая прочность и термостойкость стекла могут' быть повышены путем закалки и термохимического упрочнения.

Закалка, заключается в нагреве стекла до температуры выше tc и последующем быстром и равномерном охлаждении в потоке воздуха или в. масле. При этом сопротивление статическим нагрузкам увеличивается в 3 — 6 раз, ударная вязкость в 5 —7 раз. При закалке повышается также термостойкость стекла..

Термохимическое упрочнение основано на глубоком изменении структуры стекла и свойств его поверхности. Стекло подвергается закалке в подогретых кремнийорганических жидкостях, в результате чего на поверхности материала образуются полимерные пленки; этим создается дополнительное, по сравнению с результатом обычной закалки, упрочнение. Повышение прочности и термостойкости можно получить травлением за* каленного стекла плавиковой кислотой, в результате чего удаляются поверхностные дефекты, снижающие его качество.

Силикатные триплексы представляют собой два листа закаленного стекла (толщиной 2 — 3 мм), склеенные прозрачной, эластичной полимерной пленкой. При разрушении триплекса образовавшиеся неострые осколки удерживаются на полимерной пленке. Триплексы бывают плоскими' и гнутыми.

Термопан — трехслойное стекло, состоящее из двух стекол и воздушного промежутка между ними. Эта воздушная прослойка обеспечивает теплоизоляцию.

Применение технических стекол. Для остекления транспортных средств используют преимущественно триплексы, термопан и закаленные стекла.

Оптические стекла, применяемые в оптических приборах и инструментах, подразделяют на кроны, отличающиеся малым преломлением, и флинты— с высоким содержанием окиси свинца и большими значениями коэффициента преломления. Тяжелые флинты не пропускают рентгеновские и лучи. Светорассеивающие стекла содержат в своем составе фтор.

Остекление кабин и.помещений, где находятся пульты управления мартеновских и электрических дуговых печей, прокатных станов и подъемных кранов в литейных цехах, выполняется стеклами, содержащими окислы железа и ванадия, которые поглощают около 70% инфракрасного излучения в интервале длин волн 0,7 — 3 мкм.

Кварцевое стекло вследствие высокой термической и химической стойкости применяют для тиглей, чаш, труб, наконечников, лабораторной посуды. Близкое по свойствам к кварцевому стеклу, но более технологичное кварцоидное стекло используют для электроколб, форм для точного литья и т.д.

Электропроводящие (полупроводниковые) стекла: халькогенидные и оксидные ванадиевые, находят широкое применение в качестве термисторов, фотосопротивлений.

Теплозвукоизоляционные стекловолокнистые материалы. Эти материалы имеют рыхловолокнистую структуру с большим количеством воздушных прослоек, волокна в них располагаются беспорядочно. Такая структура сообщает этим материалам малую объемную массу (от 20 до 130 кг/м3 ) и низкую теплопроводность [λ= 0,030-0,0488 ккал/(м-ч-0 С)].

Разновидностями стекловолокнистых материалов являются стекловата, применение которой ограничено ее хрупкостью; материалы АСИМ, АТИМС, АТМ-3, состоящие из стекловолокон, расположенных между двумя слоями стеклоткани или стеклосетки, простеганной стеклонитками. Они применяются в интервале температур от — 60 до 450 —600°С. Иногда стекловолокна сочетают с термореактивной смолой, придающей матам более устойчивую рыхлую структуру (материал АТИМСС), рабочие температуры — до 150°С. Материалы, вырабатываемые из короткого волокна и синтетических смол, называются плитами. Коэффициент звукопоглощения плит при частоте 200-800 Гц равен 0,5; при частоте 8000 Гц - 0,65.

Стекловату, маты, плиты применяют для теплозвукоизоляции кабин самолетов, кузовов автомашин, железнодорожных вагонов, тепловозов, электровозов, корпусов судов, в холодильной технике, ими изолируют различные трубопроводы, автоклавы и т. д.

2. Ситаллы (стеклокристаллические материалы)

Ситаллы получают на основе неорганических стекол путем их полной или частичной управляемой кристаллизации. Термин «ситаллы» образован от слов: стекло и кристаллы. За рубежом их называют стеклокерамикой, пирокерамами. По структуре и технологии получения ситаллы занимают промежуточное положение между обычным стеклом и керамикой. От неорганических стекол они отличаются кристаллическим строением, а от керамических материалов — более мелкозернистой и однородной микрокристаллической структурой.

Ситаллы получают путем плавления стекольной шихты специального состава с добавкой нуклеаторов (катализаторов), охлаждения расплава до пластичного состояния и формования из него изделий методами стекольной технологии и последующей ситаллизации (кристаллизации). Ситалловые изделия получают также порошковым методом спекания.

В состав стекла, применяемого для получения ситаллов, входят окислы LiO2 , A12 O3 , SiO2 , MgO, CaO и др.; катализаторы кристаллизации (нуклеаторы). К числу последних относятся соли светочувствительных металлов Аи, Ag, Си, которые являются коллоидными красителями и находятся в стекле в виде мельчайших коллоидно-дисперсных частиц, а также фтористые и фосфатные соединения, ТiO2 и др., представляющие собой глушители, распределяющиеся в стекле в виде плохо растворимых частичек.

3.Керамические материалы

Керамика неорганический материал, получаемый отформованных масс в процессе высокотемпературного обжига.

Керамика на основе чистых оксидов. Оксидная керамика обладает высокой прочностью при сжатии по сравнению с прочностью при растяжении или изгибе; более прочными являются мелкокристаллические структуры. С повышением температуры прочность керамики понижается. Керамика из чистых оксидов, как правило, не подвержена процессу окисления.

Бескислородная керамика. Материалы обладают высокой хрупкостью. Сопротивление окислению при высоких температурах карбидов и боридов составляет 900-1000°С, несколько ниже оно у нитридов. Силициды могут выдерживать температуру 1300-1700°С (на поверхности образуется пленка кремнезема).

4.Графит

Графит является одной из аллотропических разновидностей углерода. Это полимерный материал кристаллического пластинчатого строения.

Графит не плавится при атмосферном давлении. Графит встречается в природе, а также получается искусственным путем.

Пиролитический графит получается из газообразного сырья. Его наносят в виде покрытия на различные материалы с целью защиты их от воздействия высоких температур.

Пирографит - объемная масса 1950-2200кг/м3 , пористость 1.5%, модуль упругости 112/70ГПа.

Список литературы

Ю.М. Лахтин, В.П. Леонтьева. Материаловедение. М.:²Машиностроение², 1990

Под редакцией С.И. Богодухова, В.А Бондаренко. Технологические процессы машиностроительного производства. Оренбург, ОГУ, 1996

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита19:36:29 01 ноября 2021
.
.19:36:27 01 ноября 2021
.
.19:36:27 01 ноября 2021
.
.19:36:26 01 ноября 2021
.
.19:36:26 01 ноября 2021

Смотреть все комментарии (31)
Работы, похожие на Дипломная работа: Неметаллические материалы

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(294399)
Комментарии (4230)
Copyright © 2005 - 2024 BestReferat.ru / реклама на сайте