Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Безкінечно малі функції

Название: Безкінечно малі функції
Раздел: Рефераты по астрономии
Тип: реферат Добавлен 22:19:27 23 января 2011 Похожие работы
Просмотров: 2 Комментариев: 13 Оценило: 1 человек Средний балл: 5 Оценка: неизвестно     Скачать

Безкінченно малі функції

Визначення 1. Функція f( x) називається безкінченно малою функцією (або просто безкінченно малою) в точці х=х0 (або при х - х0 ), якщо f( x)=0 .Аналогічно визначаються безкінечно малі функції при

Так як межа нескінченно малої функції рівна нулю , то можна дати рівносильне визначення нескнченно малої функції. Функція f ( x ) називається нескінченно малою в точці х=х0 , якщо для любого існує , таке, що для всіх , задовільняющих нерівності , виконується нерівність і на язику послідовності: функція називається безкінечно малою в точці х=х0 , якщо для любої зводящоїсі до х0 послідовність являється нескінченно малою.

Теорема. Для виконання рівняння f( x)= A необхідно і достатньо, щоб функція була х - х0 нескінченно малою при х - х0

Бескінченно малі функції володіють такими ж свойствами, що і бескінечно малі послідовності.

Теорема. Алгебраїчна сума і проізвідєніє кінцевого числа нескінченно малих функцій при х - х0 , а також проізвідєніє безкінечно малої функції на обмежену функцію являються нескінченно малими функціями при х - х0 .

Нескінченно великі функції

Визначення. Функція f( x) називається безкінченно великою функцією в точці х= х0 (або при х - х0 ), якщо для любого існує таке, що для всіх задовольняючих нерівність , виконується нерівність .

В цьому випадку пишуть f( x)= і говорять, що функція стремиться до нескінченності при х - х0 або, що вона має нескінченну межу в точці х = х0 .

Якщо виконується нерівність , то пишуть f( x)= і говорять, що функція має в точці х0 нескінченну межу, рівну .

Так наприклад, пишуть f( x)= , якщо для любого існує , таке, що для всіх , задовольняючих нерівностями , виконується нерівність .

“На язику послідовності” це визначення записується так: , якщо для любої зводящої ??? до х0 послідовності значення аргументу х , елементи х n який більше x0 , відповідають послідовності значення функцій являється нескінченно великий позитивного знака.

Аналогічно визначаються нескінченно великі функції при . Так, наприклад: функція f(x) називається нескінченно великою при , якщо для любого існує таке, що для всіх задовольняючих нерівність , виконується нерівність . При цьому пишуть f(x)= . Якщо виконується нерівність , то пишуть f(x)= ( ).

На завершення покажем, що між нескінченно малими і нескінченно великими функціями існує такий же зв'язок, як і між відповідними послідовностями, функціями, зворотньо безкінечно малої, являється безкінченно вищою і наоборот.

Насправді, нехай f(x)=0 і f(x)0 при .

Докажем, що .

Задамо довільне . Так як f(х) – нескінченно мала функція в точці х0 , то для числа 1/існує таке, що для всіх , задовільняющих нерівностям , виконується нерівність . Но тоді для тих же х виконується нерівність , т.с. - нескінченно велика функція в точці х=х0 , що і потрібно було доказати.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита15:40:18 05 ноября 2021
.
.15:40:16 05 ноября 2021
.
.15:40:15 05 ноября 2021
.
.15:40:13 05 ноября 2021
.
.15:40:12 05 ноября 2021

Смотреть все комментарии (13)
Работы, похожие на Реферат: Безкінечно малі функції

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(294399)
Комментарии (4230)
Copyright © 2005 - 2024 BestReferat.ru / реклама на сайте