Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Уравнение состояния сверхплотного вещества

Название: Уравнение состояния сверхплотного вещества
Раздел: Рефераты по астрономии
Тип: реферат Добавлен 12:14:43 08 июля 2010 Похожие работы
Просмотров: 14 Комментариев: 7 Оценило: 1 человек Средний балл: 5 Оценка: неизвестно     Скачать

Учреждение образования «Брестский государственный университет

имени А.С.Пушкина»

Физический факультет

Кафедра теоретической физики и астрономии

Реферат по специализации

«Теоретическая физика»

Уравнение состояния сверхплотного вещества.

Брест 2010


Уравнение состояния для Ае- и Аеп-фаз вещества

Мы будем иметь дело с моделями звездных конфигураций, состоящих из вырожденных газовых масс. Это конфигурации белых карликов и барионных звезд. Под последними подразумеваются модели небесных тел, состоящих из вырожденного барионного газа. В расчетах параметров этих звездных конфигураций нужно иметь уравнение состояния вещества. Нас интересуют только вырожденные состояния вещества.

Начнем с рассмотрения Ае-фазы. Она состоит из голых атомных ядер и свободного вырожденного электронного газа. При достаточно низких температурах движение ядер сводится лишь к тому, что они совершают нулевые колебания около фиксированных точек равновесия. Поэтому они не дают никакого вклада в давление вещества. Давление целиком обусловлено электронами, плотность же энергии определяется атомными ядрами.

Плотность энергии равна

ρ = (тп с2 +b)∑ 2 Ак пк + e (1)

где b— средняя энергия связи нуклона в ядрах (здесь нет смысла различать массы протона и нейтрона), пк — число ядер данного типа (с параметрами Ак и Zк ) в единице объема, ρе — плотность энергии электронного газа. В условиях наличия вырожденного электронного газа bявляется функцией е .Согласно

ρе = 4Ке(хе (1 + 2х2 e )-е + )) (2)

где, хе = ρе /mе с = (3)1 /3 hne 1/3 me с — граничный импульс электронов в единицах mе с (при ре >> те с, хе = ее с2 ) и


Ке (3)

Иногда удобно взамен хe использовать параметр tе :

tе =4arshxe (4)

С помощью этого параметра плотность энергии электронов запишется в следующем компактном виде:

ρe = Ке(sh te - te ). (5)

В выражении энергии (1) можно произвести некоторые упрощения. Так,

∑Ak nk =∑Zk nk =ne

где А/Zесть средняя величина отношения Ак /Zк (усредненная по всем типам ядер, имеющихся в среде). Учитывая последнее и пренебрегая малыми величинами bи ρе , получаем

ρ= (6)

Напомним, что из-за явления нейтронизации отношение А/ Zявляется функцией хе , эта зависимость аппроксимирована полиномом. Теперь вычислим давление. Оно равно производной энергии по объему с обратным знаком, при постоянном числе частиц и энтропии (в данном случае энтропия равна нулю). Так как парциальное давление ядер не учитывается, то


P=-()Ne =-()Ne

где Nе = Vпе — число электронов в некотором объеме V. При дифференцировании ρе нужно учесть, что хе зависит от объема V. Имея в виду (2), находим для давления

Р = Ке [xе (2 - 3) +3].(7)

Учитывая также формулу, уравнение состояния вещества в Aе-фазе можно записать в следующем параметрическом виде:


(3 Kn (2+a1 xe +a2 +a3 ,

P=()4 K(8)

Где a1, a2 , а3 — постоянные, входящие в формулу: а1 = 1,255 10-2 , а2 =1,75510-5 , а3 =1,37610-6 ; кроме того, мы ввели также новое обозначение

Кп = 5,11 1035 эргсм-3 , (9)

которое будет встречаться в дальнейшем.

Рассмотрим два важных предельных случая уравнения состояния (8). В нерелятивистском случае параметр хе мал по сравнению с единицей. Разложим Р в ряд по степеням хе и отбросим малые величины в выражениях ρ и Р; исключая параметр х, получим


Р=Aρ5/3 , (10)

Где

A= )5/3 -23 )5/3

Величина η= A/Zдля всех ядер, за исключением водорода.

Р=Bρ4/3 , (11)

Где

B=5,6410-14 )4/3

В выражении для плотности энергии мы опустили bи ρе .

Энергия связи нуклона в ядре имеет значение в интервале 0<b8 Мэв. У порога исчезновения Aе-фазы Р 1029 эргсм-3 , а отношение парциальных плотностей энергии электронов и ядер порядка

Таким образом, bи ρе действительно достаточно малы и в расчетах звездных конфигураций не могут играть сколько-нибудь заметную роль.

В приведенном уравнении состояния не учтено взаимодействие частиц. Здесь мы имеем дело только с кулоновскими силами . Было показано, что потенциальная энергия электрона, обусловленная электрическими силами, мала по сравнению с его кинетической энергией, причем с возрастанием плотности отношение их уменьшается. Таким образом, приближение идеального газа здесь вполне оправдано. Ряд поправок к выражению давления (8), обусловленных кулоновскими взаимодействиями. Поправки к Р некоторую роль могут играть лишь при больших Zи х<1. Изменения, обусловленные температурой, тоже несущественны. Здесь важным является эффект зависимости А/Zот граничной энергии электронов.

Уравнение состояния (8) применимо до x=46, чему соответствует плотность ρ2,41032 эргсм-3 . При больших плотностях мы имеем дело с Aen-фазой, где уравнение состояния другое.

Введем параметр

tn =4arshxn ,

тогда ρп и Рп запишутся в следующем виде:


ρn =Kn (sh tn - tn ),

Pn = Kn (sh tn - 8sh).(13)

Учитывая также энергию атомных ядер, парциальное давление и плотность энергии электронов, для уравнения состояния Aen-фазы вещества получаем

ρ=Kn (sh tn - tn )+mn c2 ,

P= Kn (sh tn - 8sh)+Pe .(14)

Здесь ρе и Рe —плотность энергии и давление электронного газа. Заметим, что чуть выше порога появления Aen-фазы парциальная плотность энергии и давление электронов (можно даже сказать — плотность энергии атомных ядер) достаточно малы по сравнению с соответствующими величинами для нейтронного газа. Здесь почти на всем протяжении фазы энергия и давление системы в основном определяются нейтронным газом.

Вообще говоря, в Aen-фазе следовало бы учитывать ядерные взаимодействия между нейтронами. Их вклад несуществен для энергии, но, по-видимому, является важным для давления: при заданном числе нейтронов учет ядерных сил приведет к уменьшению давления. Насколько нам известно, в рассматриваемой области плотностей теория ядерной материи как следует не разработана, поэтому мы довольствуемся приближением идеального газа. Уравнение состояния (14) справедливо в области плотностей 2,41032 ρ 5.451034 эргсм-3 .

Об асимптотическом виде уравнения состояния

Целесообразно сначала исследовать асимптотическое поведение вида уравнения состояния при чрезвычайно больших плотностях. Здесь можно достичь определенного результата, исходя из совершенно общих соображений. В опытах по рассеянию быстрых протонов на нуклонах было установлено наличие весьма интенсивных сил отталкивания, действующих на расстояниях r210-14 см. Этот экспериментальный факт дает некоторое основание утверждать, что в надъядерной области с возрастанием плотности массы состояние барионной плазмы (мы говорим о барионной плазме, поскольку концентрация лептонов в ней очень мала) все больше отходит от газа и постепенно приближается к состоянию идеальной жидкости.

Можно доказать, что при любом типе взаимодействия, если только энергия взаимодействия частиц больше их кинетической, известный закон Р ρ/3 обязательно нарушается, т. е. давление при достаточно больших плотностях может иметь значения выше ρ/3. Соотношение ЗР имеет место для идеального газа и в тех случаях, когда поля настолько слабы, что при любых плотностях кинетическая энергия частиц всегда больше их энергии взаимодействия. Такими полями являются электромагнитное, гравитационнное и некоторые типы мезонных полей.


Литература

1. Саакян, Г.С. Равновесные конфигурации вырожденных газовых масс / Г.С. Cаакян.-М.: Наука, 1972.

2. Секержицкий, В.С., Секержицкий, С.С. К вопросу о параметрах холодного сверхплотного вещества с учетом плотности ядер//К 100-летию со дня рождения Гейзенберга. – 2001, БрГУ.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Привет студентам) если возникают трудности с любой работой (от реферата и контрольных до диплома), можете обратиться на FAST-REFERAT.RU , я там обычно заказываю, все качественно и в срок) в любом случае попробуйте, за спрос денег не берут)
Olya03:07:51 29 августа 2019
.
.03:07:50 29 августа 2019
.
.03:07:49 29 августа 2019
.
.03:07:48 29 августа 2019
.
.03:07:48 29 августа 2019

Смотреть все комментарии (7)
Работы, похожие на Реферат: Уравнение состояния сверхплотного вещества

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(294399)
Комментарии (4230)
Copyright © 2005 - 2024 BestReferat.ru / реклама на сайте