Министерство образования Республики Беларусь
Учреждение образования
«Гомельский государственный университет им. Ф. Скорины»
Математический факультет
Кафедра алгебры и геометрии
Курсовая работа
Классификация групп с перестановочными обобщенно максимальными подгруппами
Исполнитель:
Студентка группы М-32 Лапухова А.Ю.
Научный руководитель:
Канд. физ-мат. наук, доцент Скиба М.Т.
Гомель 2005
Содержание
Перечень условных обозначений
Введение
1. Классификация групп с перестановочными обобщенно максимальными подгруппами
2. Группы с -перестановочными -максимальными подгруппами
3. Группы, в которых -максимальные подгруппы перестановочны с -максимальными подгруппами
4. Группы, в которых максимальные подгруппы перестановочны с -максимальными подгруппами
Заключение
Литература
Перечень условных обозначений
В работе все рассматриваемые группы предполагаются конечными. Используются обозначения, принятые в книгах. Буквами обозначаются простые числа.
Будем различать знак включения множеств и знак строгого включения ;
и - соответственно знаки пересечения и объединения множеств;
- пустое множество;
- множество всех для которых выполняется условие ;
- множество всех натуральных чисел;
- множество всех простых чисел;
- некоторое множество простых чисел, т.е. ;
- дополнение к во множестве всех простых чисел; в частности, ;
примарное число - любое число вида ;
Пусть - группа. Тогда:
- порядок группы ;
- порядок элемента группы ;
- единичный элемент и единичная подгруппа группы ;
- множество всех простых делителей порядка группы ;
- множество всех различных простых делителей натурального числа ;
-группа - группа , для которой ;
-группа - группа , для которой ;
- подгруппа Фраттини группы , т.е. пересечение всех максимальных подгрупп группы ;
- подгруппа Фиттинга группы , т.е. произведение всех нормальных нильпотентных подгрупп группы ;
- наибольшая нормальная -нильпотентная подгруппа группы ;
- коммутант группы , т.е. подгруппа, порожденная коммутаторами всех элементов группы ;
- -ый коммутант группы ;
- наибольшая нормальная -подгруппа группы ;
- -холловская подгруппа группы ;
- силовская -подгруппа группы ;
- дополнение к силовской -подгруппе в группе , т.е. -холловская подгруппа группы ;
- группа всех автоморфизмов группы ;
- является подгруппой группы ;
- является собственной подгруппой группы ;
- является максимальной подгруппой группы ;
нетривиальная подгруппа - неединичная собственная подгруппа;
- является нормальной подгруппой группы ;
- подгруппа характеристична в группе , т.е. для любого автоморфизма ;
- индекс подгруппы в группе ;
;
- централизатор подгруппы в группе ;
- нормализатор подгруппы в группе ;
- центр группы ;
- циклическая группа порядка ;
- ядро подгруппы в группе , т.е. пересечение всех подгрупп, сопряжённых с в .
Если и - подгруппы группы , то:
- прямое произведение подгрупп и ;
- полупрямое произведение нормальной подгруппы и подгруппы ;
- и изоморфны.
Группа называется:
примарной, если ;
бипримарной, если .
Скобки применяются для обозначения подгрупп, порождённых некоторым множеством элементов или подгрупп.
- подгруппа, порожденная всеми , для которых выполняется .
, где .
Группу называют:
-замкнутой, если силовская -подгруппа группы нормальна в ;
-нильпотентной, если -холловская подгруппа группы нормальна в ;
-разрешимой, если существует нормальный ряд, факторы которого либо -группы, либо -группы;
-сверхразрешимой, если каждый ее главный фактор является либо -группой, либо циклической группой;
нильпотентной, если все ее силовские подгруппы нормальны;
метанильпотентной, если существует нормальная нильпотентная подгруппа группы такая, что нильпотентна.
разрешимой, если существует номер такой, что ;
сверхразрешимой, если она обладает главным рядом, все индексы которого являются простыми числами.
Группа Шмидта - это конечная ненильпотентная группа, все собственные группы которой нильпотентны.
Добавлением к подгруппе группы называется такая подгруппа из , что .
Минимальная нормальная подгруппа группы - неединичная нормальная подгруппа группы , не содержащая собственных неединичных нормальных подгрупп группы .
Цоколь группы - произведение всех минимальных нормальных подгрупп группы .
- цоколь группы .
Экспонента группы - это наименьшее общее кратное порядков всех ее элементов.
Цепь - это совокупность вложенных друг в друга подгрупп. Ряд подгрупп - это цепь, состоящая из конечного числа членов и проходящая через единицу.
Ряд подгрупп называется:
субнормальным, если для любого ;
нормальным, если для любого ;
главным, если является минимальной нормальной подгруппой в для всех .
Классы групп, т.е. совокупности групп, замкнутые относительно изоморфизмов, обозначаются прописными готическими буквами. Также обозначаются формации, т.е. классы групп, замкнутые относительно факторгрупп и подпрямых произведений. За некоторыми классами закреплены стандартные обозначения:
- класс всех групп;
- класс всех абелевых групп;
- класс всех нильпотентных групп;
- класс всех разрешимых групп;
- класс всех -групп;
- класс всех сверхразрешимых групп;
- класс всех абелевых групп экспоненты, делящей .
Формации - это классы конечных групп, замкнутые относительно взятия гомоморфных образов и конечных подпрямых произведений.
Пусть - некоторый класс групп и - группа, тогда:
- -корадикал группы , т.е. пересечение всех тех нормальных подгрупп из , для которых . Если - формация, то является наименьшей нормальной подгруппой группы , факторгруппа по которой принадлежит . Если - формация всех сверхразрешимых групп, то называется сверхразрешимым корадикалом группы .
Формация называется насыщенной, если всегда из следует, что и .
Класс групп называется наследственным или замкнутым относительно подгрупп, если из того, что следует, что и каждая подгруппа группы также принадлежит .
Произведение формаций и состоит из всех групп , для которых , т.е. .
Пусть - некоторая непустая формация. Максимальная подгруппа группы называется -абнормальной, если .
Подгруппы и группы называются перестановочными, если .
Пусть , -подгруппы группы и . Тогда называется:
(1) -перестановочной с , если в имеется такой элемент , что ;
(2) наследственно -перестановочной с , если в имеется такой элемент , что .
Пусть - максимальная подгруппа группы . Нормальным индексом подгруппы называют порядок главного фактора , где и , и обозначают символом .
Подгруппа группы называется -максимальной подгруппой или иначе второй максимальной подгруппой в , если в найдется такая максимальная подгруппа , в которой является максимальной подгруппой. Аналогично определяют -максимальные (третьи максимальные) подгруппы, -максимальные подгруппы и т.д.
Введение
Подгруппы и группы называются перестановочными, если . Подгруппа группы называется перестановочной или квазинормальной в , если перестановочна с каждой подгруппой группы .
Перестановочные подгруппы обладают рядом интересных свойств, чем был и вызван широкий интерес к анализу перестановочных и частично перестановочных подгрупп в целом. Изучение перестановочных подгрупп было начато в классической работе Оре, где было доказано, что любая перестановочная подгруппа является субнормальной. Подгруппы, перестановочные с силовскими подгруппами, впервые изучались в работе С.А. Чунихина . Отметим, что подгруппы такого типа были названы позднее в работе Кегеля -квазинормальными. В 60-70-х годах прошлого столетия появились ряд ключевых работ по теории перестановочных подгрупп, которые предопределили основные направления развития теории перестановочных подгрупп в последующие годы. Уточняя отмеченный выше результат Оре, Ито и Сеп в работе доказали, что для каждой перестановочной подгруппы группы факторгруппа нильпотентна. В другом направлении этот результат Оре получил развитие в работах Кегеля и Дескинса. Кегель доказал, что любая -квазинормальная подгруппа является субнормальной и показал, что подгруппы, перестановочные с силовскими подгруппами, образуют решетку. Первый из этих двух результатов Дескинс обобщил следующим образом, если порождается своими -элементами и -подгруппа группы -квазинормальна в , то факторгруппа нильпотентна. В этой работе Дескинс высказал предположение о том, что для квазинормальной в подгруппы факторгруппа абелева. Отрицательное решение этой задачи было получено Томпсоном в работе.
Отметим, что после выхода работ, частично перестановочные подгруппы стали активно использоваться в исследованиях многих авторов. В частности, в работе Э.М. Пальчик исследовал свойства -квазинормальных подгрупп, т. е. подгрупп перестановочных со всеми бипримарными подгруппами группы . Существенно усиливая результат работы, Майер и Шмид доказали, что если - квазинормальная подгруппа конечной группы , то факторгруппа содержится в гиперцентре факторгруппы , где - ядро подгруппы . Отметим, что аналогичный результат для подгрупп, перестановочных с силовскими подгруппами, был получен лишь в недавней работе П. Шмидта. Стоунхьюер в работе обобщил результат Оре на случай бесконечных групп. Он доказал, что каждая перестановочная подгруппа конечно порожденной группы субнормальна.
Значительные успехи, достигнутые в изучении перестановочных подгрупп, в 1960-1980 годах послужили основой для дальнейшего изучения групп по наличию в них тех или иных систем перестановочных подгрупп. В частности, Хупперт доказал, что разрешимая группа сверхразрешима, если все максимальные подгруппы всех силовских подгрупп из перестановочны с силовскими подгруппами из , и группа разрешима, если в ней имеется такая силовская подгруппа и такое ее дополнение , что перестановочна со всеми максимальными подгруппами из . Эти два результата Хупперта дали толчок большому числу публикаций, cвязанных с исследованием влияния на строение основой группы максимальных подгрупп силовских подгрупп и, в частности, с исследованием перестановочности таких подгрупп. Другой результат, давший значительный импульс к исследованию групп с заданными системами перестановочных подгрупп был получен Асаадом и Шаланом в их совместной работе, где была доказана сверхразрешимость конечной группы при условии, что , где все подгруппы из перестановочны со всеми подгруппами из . Идеи этой работы и, в частности, отмеченный здесь результат этой работы были развиты во многих направлениях в исследованиях многих авторов, где на основе перестановочности были описаны многие важные классы конечных и бесконечных групп .
В работе Го Вэньбиня, Шама и А.Н. Скибы было рассмотрено новое обобщение понятия перестановочной подгруппы. Согласно, погруппы и называются -перестановочными, где , если в имеется такой элемент , что . Используя понятие -перестановочности можно охарактеризовать многие важные классы групп по наличию в них тех или иных -перестановочных подгрупп для подходящих . Согласно, группа является сверхразрешимой тогда и только тогда, когда все ее максимальные подгруппы -перестановочны со всеми другими подгруппами этой группы. Новые характеризации в терминах -перестановочных подгрупп для класов разрешимых, сверхразрешимых и нильпотентных групп можно найти в работах.
Таким образом, задача изучения групп с заданной системой перестановочных и обобщенно перестановочных подгрупп вполне актуальна, и дальнейшей ее реализации посвящена данная работа.
1. Классификация групп с перестановочными
обобщенно максимальными подгруппами
Результаты, связанные с изучением максимальных подгрупп, составили одно из самых содержательных направлений в теории конечных групп. Это связано прежде всего с тем, что многие известные классы групп допускают описания на основе свойств максимальных подгрупп. Отметим, например, что группа нильпотентна тогда и только тогда, когда все ее максимальные подгруппы нормальны; сверхразрешима тогда и только тогда, когда индексы всех ее максимальных подгрупп просты ; разрешима тогда и только тогда, когда у любой ее максимальной подгруппы нормальный индекс совпадает с обычным индексом . Отметим также, что максимальные подгруппы лежат в основе многих важных признаков принадлежности группы выделенному классу групп. Наиболее известными результатами в этом направлении являются теорема Дескинса-Томпсона-Янко о том, что группа разрешима, если она обладает максимальной нильпотентной подгруппой, у которой класс нильпотентности силовских -подгрупп не превосходит 2 и теорема О.Ю. Шмидта о разрешимости группы, у которой все максимальные подгруппы нильпотентны. Отметим, что разрешимость групп, у которых все максимальные подгруппы сверхразрешимы, была установлена Хуппертом.
По мере развития теории максимальных подгрупп многими авторами предпринимались также попытки изучения и применения -максимальных, -максимальных и т.д. подгрупп. При этом, как и для максимальных подгрупп, с одной стороны рассматривались группы с различными ограничениями на способ вложения обобщенно максимальных подгрупп в эти группы, с другой стороны исследовались свойства основной группы в зависимости от условий, накладываемых на внутреннее строение -максимальных, -максимальных и т.д. подгрупп. Пожалуй, наиболее ранний результат, относящийся к этому направлению, был получен Хуппертом, установившим сверхразрешимость группы, у которой все вторые максимальные подгруппы нормальны. В дальнейшем этот результат был развит в нескольких направлениях. В частности, сверхразрешимость разрешимых групп, у которых все вторые максимальные подгруппы перестановочны со всеми силовскими подгруппами было установлена Агровалем , а в работе Л.А. Поляков доказал, что группа сверхразрешима, если любая ее -максимальная подгруппа перестановочна со всеми максимальными подгруппами этой группы .
Оказалось, что группы, у которых все -максимальные подгруппы нильпотентны, не обязательно разрешимы и полное описание групп с таким свойством в неразрешимом случае было получено Янком, а в разрешимом случае В.А. Белоноговым. Группы, у которых все -максимальные подгруппы абелевы, были описаны Я.Г. Берковичем в работе. Эти результаты получили развитие в работе В.Н. Семенчука, который дал полное описание разрешимых групп, у которых все их -максимальные подгруппы сверхразрешимы.
В последние годы получен ряд новых интересных результатов о -максимальных подгруппах, связанных с изучением их способа вложения в основную группу. В этой связи, прежде всего , в которых на языке -максимальных подгрупп получены описания ряда важных классов групп. Напомним, что подгруппа группы обладает свойством покрытия-изолирования, если для любого главного фактора группы выполняется одно из двух условий или . В работе доказано, что группа разрешима тогда и только тогда, когда в имеется такая -максимальная разрешимая подгруппа, которая обладает свойством покрытия-изолирования. Отметим также, что в работе, а также в работе изучалось строение групп, в зависимоси от -максимальных подгрупп их силовских подгрупп.
Пусть и - подгруппы группы . Тогда подгруппа называется -перестановочной с , если в найдется такой элемент , что . В работе найдены новые описания нильпотентных и сверхразрешимых групп на основе условия -перестановочности для -максимальных подгрупп. В частности, доказано, что: Группа нильпотентна тогда и только тогда, когда для любой -максимальной подгруппы группы , имеющей непримарный индекс, в найдется такая нильпотентная подгруппа , что и -перестановочна со всеми подгруппами из .
Пусть - набор всех -максимальных подгрупп группы .
Как показывают упомянутые выше результаты работ, условия перестановочности, накладываемые на подгруппы из , существенно определяют строение основной группы. В работе Л.Я. Полякова было доказано, что группа разрешима, если любая подгруппа из перестановочна со всеми подгруппами из для всех , где . В связи с этим результатом естественно возникает вопрос о полном описании групп с таким свойством. Решению данной задачи и посвящена настоящая глава.
Отмеченные выше результаты работы допускают следующие уточнения.
[2.1]. Пусть - группа, - ее подгруппа Фиттинга. Если любая -максимальная подгруппа группы -перестановочна со всеми максимальными подгруппами группы , то группа метанильпотентна.
Доказательство. Предположим, что теорема не верна, и пусть - контрпример минимального порядка. Доказательство разобьем на следующие этапы.
(1) Для любой неединичной нормальной в подгруппы факторгруппа метанильпотентна.
Рассмотрим факторгруппу . Пусть - произвольная максимальная в подгруппа и - произвольная -максимальная подгруппа. Тогда максимальна в и -максимальна в , а значит, по условию подгруппа -перестановочна с подгруппой . Но тогда, согласно лемме , подгруппа -перестановочна с подгруппой . Итак, условие теоремы выполняется в . Но и поэтому согласно выбора группы , мы имеем (1).
(2) - разрешимая группа.
Если в группе существует единичная -максимальная подгруппа, то теорема очевидно справедлива. Предположим, что в группе все -максимальные подгруппы отличны от единицы. Докажем, что для каждой максимальной подгруппы группы , . Пусть - максимальная подгруппа группы . Тогда по условию для каждого , мы имеем . Ввиду леммы , и, следовательно, . Значит, . Поскольку , то и поэтому по выбору группы мы заключаем, что - разрешимая группа. Это означает, что разрешима, и следовательно, - разрешимая группа.
(3) Группа имеет единственную минимальную нормальную подгруппу и , где и - максимальная в подгруппа, которая не является нильпотентной группой.
Пусть - произвольная минимальная нормальная подгруппа группы . Так как класс всех метанильпотентных групп образует насыщенную формацию (см. лемму ), то - единственная минимальная нормальная подгруппа в , причем . В силу (2), является элементарной абелевой -группой для некоторого простого . Пусть - максимальная подгруппа в такая, что . Пусть . Ясно, что . Так как , мы видим, что . Это показывает, что и, следовательно, . Ясно, что и поэтому по выбору группы , не является нильпотентной группой.
(4) Заключительное противоречие.
В силу (3), в группе имеется максимальная подгруппа , которая не является нормальной подгруппой в . Поскольку для любого , - максимальная в подгруппа и - максимальная подгруппа в , то - -максимальная в подгруппа. Если - нормальная подгруппа в , то . Значит, не является нормальной подгруппой в . Покажем, что - максимальная подгруппа группы . Пусть . Пусть - такая максимальная подгруппа группы , что . Тогда . Значит, или . Первый случай, очевидно, невозможен. Следовательно, . Так как , то - максимальная в подгруппа. Тогда для любого , -перестановочна с . Поскольку , то ввиду леммы (6), перестановочна с . Из максимальности подгруппы следует, что или . Если , то ввиду леммы , . Полученное противоречие показывает, что . Тогда для любого и поэтому . Следовательно, . Это означает, что - нормальная подгруппа в , противоречие. Теорема доказана.
[2.1]. Каждая -максимальная подгруппа группы перестановочна с любой максимальной подгруппой в тогда и только тогда, когда либо нильпотентна, либо - такая ненильпотентная группа с , что циклическая силовская -подгруппа группы не нормальна в , а максимальная подгруппа группы нормальна в .
Доказательство. Необходимость. Разрешимость группы следует из теоремы . Предположим теперь, что не является нильпотентной группой. Пусть - максимальная подгруппа группы , которая не является нормальной в . Пусть и - максимальная подгруппа группы . Рассуждая как выше видим, что . Следовательно, , и - циклическая примарная группа. Пусть . Покажем, что . Допустим, что . Пусть - силовская -подгруппа группы и - максимальная подгруппа группы . Тогда - -максимальная подгруппа группы и, следовательно, по условию - подгруппа группы , что противоречит максимальности подгруппы . Отсюда следует, что .
Достаточность очевидна. Следствие доказано.
[2.2]. Если в группе любая ее максимальная подгруппа перестановочна со всеми -максимальными подгруппами группы и , то - нильпотентная группа.
В дальнейшем нам потребуется следующая теорема.
[2.2]. Пусть - группа, - ее подгруппа Фиттинга. Если любая -максимальная подгруппа группы -перестановочна со всеми -максимальными подгруппами группы , то группа разрешима и для каждого простого .
Доказательство. Предположим, что данная теорема не верна, и пусть - контрпример минимального порядка. Доказательство разобьем на следующие этапы.
(1) - разрешимая группа.
Действительно, если , то каждая -максимальная подгруппа группы перестановочна со всеми 3-максимальными подгруппами группы . Тогда по следствию , каждая максимальная подгруппа группы сверхразрешима. Согласно известной теоремы Хупперта о разрешимости группы, в которой все собственные подгруппы сверхразрешимы, - разрешимая группа.
Пусть теперь . Так как условие теоремы справедливо для группы , то группа разрешима и поэтому - разрешимая группа.
(2) Группа имеет единственную минимальную нормальную подгруппу
и ,
где - такая максимальная в подгруппа, что , и .
Так как класс всех разрешимых групп с образует насыщенную формацию , то ввиду (1), и поэтому в группе существует единственная минимальная нормальная подгруппа . Из леммы вытекает, что , где - такая максимальная в подгруппа, что и . Покажем, что делит . Если не делит , то - -группа, и поэтому , что противоречит выбору группы . Итак, делит . Допустим, что . Тогда факторгруппа изоморфна подгруппе группы автоморфизмов . Так как группа абелева, то - сверхразрешимая группа, и поэтому . Полученное противоречие с выбором группы показывает, что .
(3) Заключительное противоречие.
Пусть - -максимальная подгруппа группы и - максимальная подгруппа группы . Тогда и . Пусть - максимальная подгруппа группы такая, что является максимальной подгруппой группы . Покажем, что - максимальная подгруппы группы и - максимальная подгруппа группы . Так как , то - собственная подгруппа группы . Предположим, что в существует подгруппа такая, что . Тогда из того, что - максимальная подгруппа группы , следует, что либо , либо . Если , то , противоречие. Используя приведенные выше рассуждения видим, что . Следовательно, - максимальная подгруппа в . Рассуждая как выше, мы видим, что и - максимальные подгруппы группы . Отсюда следует, что - -максимальная подгруппа группы и - -максимальная подгруппа группы . По условию существует элемент такой, что . Следовательно,
и поэтому . Таким образом, каждая -максимальная подгруппа группы перестановочна с каждой максимальной подгруппой группы . Ввиду (2) и следствия , получаем, что , где силовская -подгруппа нормальна в группе . Значит, , где и . Пусть - силовская -подгруппа и - силовская -подгруппа группы . Пусть - -максимальная подгруппа группы такая, что . Так как , то - неединичная подгруппа. Ясно, что - -максимальная подгруппа группы и - -максимальная подгруппа группы . Следовательно, по условию подгруппа -перестановочна с , и поэтому для некоторого мы имеем - подгруппа группы . Поскольку , то - нормальная подгруппа в группе . Так как , то - нормальная подгруппа в группе . Получили противоречие с тем, что - минимальная нормальная подгруппа. Теорема доказана.
Для доказательства теоремы [2.3] нам понадобятся следующие две леммы.
Если все максимальные подгруппы группы имеют простые порядки, то сверхразрешима.
Доказательство. Так как в группе все -максимальные подгруппы единичны, то ввиду следствия группа либо нильпотентна, либо , где - подгруппа простого порядка и - циклическая -подгруппа, которая не является нормальной в подгруппой ( - различные простые числа). Предположим, что не является нильпотентной группой. Тогда . Поскольку , то - максимальная подгруппа группы и поэтому . Так как группа порядка разрешима, то группа разрешима. Значит, - нормальная в подгруппа и поэтому главные факторы группы имеют простые порядки. Следовательно, - сверхразрешимая группа. Лемма доказана.
Если в группе каждая максимальная подгруппа , индекс которой является степенью числа , нормальна в , то - -нильпотентная группа.
Доказательство. Предположим, что данная лемма не верна, и пусть - контрпример минимального порядка. Тогда:
(1) Для любой неединичной нормальной подгруппы группы факторгруппа -нильпотентна.
Пусть - максимальная подгруппа группы такая, что явяется степенью числа . Тогда - максимальная в подгруппа и является степенью числа . По условию, нормальна в , и поэтому нормальна в . Так как , то - -нильпотентная группа.
(2) Группа имеет единственную минимальную нормальную подгруппу и - -подгруппа.
Пусть - минимальная нормальная подгруппа группы . Так как класс всех -нильпотентных групп образует насыщенную формацию, то ввиду (1), и - единственная минимальная нормальная подгруппа группы . Предположим, что - -подгруппа. Тогда для некоторой -холловой подруппы группы . Поскольку ввиду (1), нормальна в , то - нормальная подгруппа в группе , противоречие. Следовательно, - элементарная абелева -подгруппа.
(3) Заключительное противоречие.
Пусть - максимальная подгруппа группы , не содержащая . Поскольку абелева, то и поэтому . Это влечет . Следовательно, для некоторого . Значит, - нормальная в подгруппа и поэтому , противоречие. Лемма доказана.
Дополнением к теореме [2.2] является следующий факт.
[2.3]. Пусть - группа, - ее подгруппа Фиттинга. Если любая максимальная подгруппа группы -перестановочна со всеми -максимальными подгруппами группы , то группа разрешима и для каждого простого .
Доказательство. Предположим, что теорема не верна, и пусть - контрпример минимального порядка.
(1) - непростая группа.
Допустим, что . Поскольку ввиду леммы (3), условие теоремы выполняется для факторгруппы , то по выбору группы , разрешима и поэтому - разрешимая группа. Полученное противоречие показывает, что и, следовательно, любая максимальная подгруппа группы перестановочна со всеми -максимальными подгруппами в .
Предположим, что все -максимальные подгруппы группы единичны. Тогда порядок каждой -максимальной подгруппа группы является делителем простого числа. Следовательно, любая максимальная подгруппа группы либо нильпотентна (порядка или ), либо является ненильпотентной подгруппой и имеет порядок . Значит, все максимальные подгруппы сверхразрешимы. Но ввиду теоремы , мы получаем, что разрешима. Это противоречие показывает, что в группе существует неединичная -максимальная подгруппа . Пусть - максимальная подгруппа группы , содержащая . Тогда для любого , . Если , то ввиду леммы , . Полученное противоречие показывает, что . Тогда , что влечет . Следовательно, - неединичная нормальная подгруппа в и поэтому группа непроста.
(2) Для любой неединичной нормальной в подгруппы факторгруппа разрешима
(это прямо вытекает из леммы (3)).
(3) Группа имеет единственную минимальную нормальную подгруппу и , где - такая максимальная в подгруппа, что .
Пусть - произвольная минимальная нормальная подгруппа группы . Так как ввиду леммы , класс всех разрешимых групп c -длиной образует насыщенную формацию, то - единственная минимальная нормальная подгруппа в , причем . Пусть - максимальная подгруппа группы такая, что . Ясно, что . Поскольку - единственная минимальная нормальная подгруппа в , то .
(4) - разрешимая группа.
Допустим, что - неразрешимая группа. Тогда и по выбору группы мы заключаем, что - прямое произведение изоморфных простых неабелевых групп. Кроме того, и единичная подгруппа не содержится среди -максимальных подгрупп группы .
Пусть - произвольная -максимальная подгруппа, содержащаяся в . Используя приведенные выше рассуждения, видим, что . Следовательно, порядок любой -максимальной подгруппы группы , содержащейся в , равен простому числу. Ввиду леммы , - разрешимая группа. Пусть - максимальная подгруппа группы , содержащая . Так - простое число, то либо , либо . Пусть имеет место первый случай. Тогда , и поскольку - простое число, то - максимальная подгруппа группы . Из того, что индекс равен простому числу, следует, что - максимальная подгруппа группы и поэтому - -максимальная подгруппа в . Так как - неабелевая подгруппа, то в ней существует неединичная максимальная подгруппа . Понятно, что - -максимальная подгруппа в и поэтому по условию перестановочна с . В таком случае, . Но - собственная подгруппа в и поэтому . Это противоречие показывает, что . Следовательно, . Поскольку - простое число, то - максимальная подгруппа в . Из того, что группа есть прямое произведение изоморфных простых неабелевых групп, следует, что в имеется неединичная -максимальная подгруппа . Тогда -максимальна в и следовательно, . Таким образом . Это влечет . Полученное противоречие показывает, что - разрешимая группа.
(5) Заключительное противоречие.
Из (3) и (4) следует, что - элементарная абелева -группа для некоторого простого числа и поэтому . Покажем, что делит . Если не делит , то - -группа, и поэтому , что противоречит выбору группы . Итак, делит . Ввиду леммы , .
Пусть - произвольная максимальная в подгруппа с индексом , где и . Тогда , где - силовская -подгруппа группы .
Предположим, что не является нормальной в подгруппой. Ясно, что - максимальная в подгруппа. Если - нормальная подгруппа в , то . Значит, не является нормальной подгруппой в . Пусть - произвольная максимальная подгруппа группы . Тогда - -максимальная в подгруппа и поэтому - -максимальная в подгруппа для любого . Поскольку по условию -перестановочна с подгруппой и , то перестановочна с подгруппой и поэтому . Ясно, что - -максимальная в подгруппа. Так как и не является нормальной подгруппой в , то и поэтому - нормальная погруппа в . Следовательно, - нормальная в подгруппа. Это влечет, что . Ввиду произвольного выбора , получаем, что каждая максимальная подгруппа группы нормальна в . Значит, - нильпотентная группа и любая максимальная подгруппа в нормальна в . Предположим, что . Поскольку и разрешима, то в группе существует минимальная нормальная -подгруппа , где . Так как - максимальная в подгруппа, то . Это влечет, что . Следовательно, группа обладает главным рядом
и поэтому . Полученное противоречие с выбором группы показывает, что . Пусть - такая максимальная подгруппа группы , что . Тогда . Это влечет , что противоречие тому, что .
Следовательно, - нормальная подгруппа в . Согласно лемме , - -нильпотентная группа и поэтому . Ввиду произвольного выбора , получаем, что для любого и . Ясно, что , что противоречит . Теорема доказана.
Целью данного раздела является описание ненильпотентных групп, у которых каждая -максимальная подгруппа перестановочна со всеми -максимальными подгруппами.
Для доказательства основного результата данного раздела нам понадобится следующая лемма.
[3.1]. Пусть - группа Шмидта. Тогда в том и только том случае каждая 2-максимальная подгруппа группы перестановочна со всеми 3-максимальными подгруппами группы , когда группа имеет вид:
(1) - группа Миллера-Морено;
(2) , где - группа кватернионов порядка , - группа порядка .
Доказательство. Необходимость. Предположим, что - группа Шмидта, у которой каждая 2-максимальная подгруппа группы перестановочна со всеми 3-максимальными подгруппами группы . Докажем, что в этом случае, либо - группа Миллера-Морено, либо , где - группа кватернионов порядка и - группа порядка . Предположим, что это не так и пусть - контрпример минимального порядка.
Так как - группа Шмидта, то ввиду леммы (I), , где - силовская -подгруппа в , - циклическая -подгруппа.
Покажем, что - группа простого порядка. Предположим, что это не так. Тогда в группе имеется собственная подгруппа простого порядка. Ввиду леммы (IV), и, следовательно, - нормальная подгруппа в группе и - группа Шмидта.
Понятно, что в группе каждая 2-максимальная подгруппа группы перестановочна со всеми 3-максимальными подгруппами группы .
Поскольку , то и поэтому по выбору группы мы заключаем, что либо - группа Миллера-Морено, либо , где - группа кватернионов порядка и - группа порядка .
В первом случае - абелева подгруппа и, следовательно, - группа Миллера-Морено. Полученное противоречие с выбором группы показывает, что , где - группа кватернионов порядка и - группа порядка . Тогда , где - группа кватернионов порядка и - циклическая группа порядка . Пусть - такая максимальная подгруппа группы , что . Если , то . Поскольку - группа Шмидта, то нильпотентна, и поэтому . Это означает, что - нормальная подгруппа в группе . Полученное противоречие показывает, что . Следовательно, - максимальная подгруппа группы . Понятно, что - -максимальная подгруппа группы . Пусть - подгруппа группы с индексом . Ясно, что - -макимальная подгруппа группы . Так как по условию и перестановочны, то - подгруппа группы , индекс которой равен . Рассуждая как выше, видим, что - нормальная подгруппа группы . Полученное противоречие показывает, что - группа простого порядка.
Пусть - произвольная максимальная подгрупа в и - максимальная подгруппа в . Так как неабелева, то - неединичная подгруппа. Из того, что - максимальная подгруппа в , следует, что - 3-максимальная подгруппа в .
Ввиду леммы (II), - максимальная подгруппа в . Рассмотрим максимальную в подгруппу , такую что . Тогда
и - 2-максимальная подгруппа в . По условию подгруппы и перестановочны. Если , то используя лемму (V), имеем
Из того, что получаем, что порядок делит . Поскольку , то полученное противоречие показывает, что - собственная подгруппа группы . Следовательно, нильпотентна, и поэтому
Значит, либо - максимальная подгруппа в , либо . В первом случае получаем, что является единственной максимальной подгруппой в . Это означает, что - циклическая подгруппа, что противоречит выбору группы . Следовательно, первый случай невозможен. Итак, . Ввиду произвольного выбора получаем, что - единственная -максимальная подгруппа в группе . Из теоремы следует, что - либо циклическая группа, либо группа кватернионов порядка . Так как первый случай очевидно невозможен, то - группа кватернионов порядка . Поскольку подгруппа изоморфна погруппе группы автоморфизмов , то . Полученное противоречие с выбором группы доказывает, что либо - группа Миллера-Морена, либо , где - группа кватернионов порядка и - группа порядка .
Достаточность очевидна. Лемма доказана.
. В ненильпотентной группе каждая -максимальная подгруппа группы перестановочна со всеми -максимальными подгруппами группы тогда и только тогда, когда группа имеет вид:
(1) - группа Миллера-Морена;
(2) - группа Шмидта, где - группа кватернионов порядка и - группа порядка ;
(3) и ,
где - группа простого порядка , - нециклическая -группа и все ее максимальные подгруппы, отличные от , цикличны;
(4) ,
где - группа порядка , - группа простого порядка , отличного от ;
(5) ,
где - группа порядка , каждая подгруппа которой нормальна в группе , - циклическая -группа и ;
(6) ,
где - примарная циклическая группа порядка , - группа простого порядка , где и ;
(7) ,
где и - группы простых порядков и (), - циклическая -подгруппа в (), которая не является нормальной в , но максимальная подгруппа которой нормальна в .
Доказательство. Необходимость. Пусть - ненильпотентная группа, у которой каждая 2-максимальная подгруппа группы перестановочна со всеми 3-максимальными подгруппами группы .
Если в группе все максимальные подгруппы нильпотентны, то группа является группой Шмидта. Ввиду леммы, группа оказывается группой типа (1) или типа (2).
Итак, мы можем предположить, что в группе существует ненильпотентная максимальная подгруппа.
Из теоремы следует, что группа разрешима. Так как в разрешимой группе индекс любой максимальной подгруппы является степенью простого числа, то .
I. .
Пусть - некоторая силовская -подгруппа в и - некоторая силовская -подгруппа в , где .
Предположим, что в группе нет нормальных силовских подгрупп. Так как группа разрешима, то в существует нормальная подгруппа простого индекса, скажем индекса , и она не является нильпотентной группой. Действительно, если нильпотентна, то в ней нормальна силовская -подгруппа . Так как , то - нормальная подгруппа в . Из того, что следует, что - нормальная силовская -подгруппа в . Полученное противоречие показывает, что не является нильпотентной подгруппой.
Так как является максимальной подгруппой в , то по условию все 2-максимальные подгруппы группы перестановочны с каждой максимальной подгруппой группы . Ввиду следствия , группа имеет вид , где - группа простого порядка и - циклическая -подгруппа.
Так как
и факторгруппа изоморфна подгруппе из , то больше .
Если - нильпотентная группа, то и поэтому согласно теореме Бернсайда , группа -нильпотентна. Но тогда . Полученное противоречие показывает, что является ненильпотентной группой. Так как - нормальная подгруппа в , то ввиду следствия , подгруппа имеет вид , где - циклическая -подгруппа, и, следовательно, . Полученное противоречие показывает, что в группе существует нормальная силовская подгруппа.
Пусть, например, такой является силовская -подгруппа группы . Пусть . Ясно, что .
Если в группе существует подгруппа Шмидта , индекс которой равен , то . Ввиду следствия , - группа порядка .
Пусь . Допустим, что - циклическая подгруппа. В этом случае, группа является группой Шмидта. Полученное противоречие с выбором группы показывает, что - нециклическая подгруппа. Пусть - произвольная максимальная подгруппа группы , отличная от . Если - нильпотентная подгруппа, то группа нильпотентна, противоречие. Следовательно, - группа Шмидта, и поэтому - циклическая подгруппа. Таким образом, группа относится к типу (3).
Пусть . Тогда . Следовательно, - -максимальная подгруппа группы . Пусть - произвольная максимальная подгруппа группы . Если - нильпотентная подгруппа, то , и поэтому . Полученное противоречие показывает, что - группа Шмидта. Значит, - циклическая подгруппа. Пусть - произвольная максимальная подгруппа группы , отличная от . Так как , то - единственная -максимальная подгруппа группы . Следовательно, . Факторгруппа , где - элементарная абелева подгруппа порядка и . Так как - неприводимая абелева группа автоморфизмов группы , то - циклическая группа, и поэтому подгруппа циклическая, противоречие.
Предположим теперь, что у всех подгрупп Шмидта индекс в группе является степенью числа .
Так как в группе существуют собственные подгруппы Шмидта, то . Пусть - подгруппа Шмидта группы . Тогда для некоторого . Понятно, что для некоторого имеет место и поэтому не теряя общности мы может полагать, что . Поскольку , то . Из того, что , следует, что .
Так как - максимальная подгруппа группы , то по условию 2-максимальные подгруппы группы перестановочны со всеми максимальными подгруппами в . Используя следствие, мы видим, что - группа простого порядка и - циклическая подгруппа, причем все собственные подгруппы группы нормальны в . Следовательно, является максимальной подгруппой группы .
Предположим, что . Пусть - максимальная подгруппа группы . Тогда . Из того, что , следует, что - нильпотентная максимальная подгруппа в . Значит, - нормальная подгруппа в . Поскольку нормальна в , то - нормальная подгруппа группы . Так как , то в группе существует 2-максимальная подгруппа такая, что . Тогда - -максимальная подгруппа в , и следовательно, - -максимальная подгруппа в . Поскольку по условию перестановочна с , то
что приводит к противоречию с максимальностью подгруппы . Следовательно, .
Предположим теперь, что . Допустим, что . Пусть - произвольная максимальная подгруппа группы и - произвольная -максимальная подгруппа группы . Рассуждая как выше видим, что - нормальная подгруппа в группе и поэтому - подгруппа группы . Используя приведенные выше рассуждения видим, что . Полученное противоречие с максимальностью подгруппы показывает, что . Пусть - максимальная подгруппа группы , такая что . Так как , то - абелева и поэтому . Следовательно, . Так как , то . Из того, что
получаем, что , и поэтому - нормальная подгруппа в группе .
Предположим, что в группе существует подгруппа порядка , отличная от . Из того, что порядок следует, что - максимальная подгруппа группы . Отсюда следует, что - -максимальная подгруппа группы . Так как по условию подгруппы и перестановочны, то мы имеем
Следовательно, - подгруппа группы , и поэтому
Это противоречие показывает, что в группе существует единственная подгруппа порядка . Ввиду теоремы , группа является либо группой кватернионов порядка , либо является циклической группой порядка . В первом случае, подгруппа порядка группы содержится в центре группы , и поэтому подгруппа не является группой Шмидта, противоречие. Следовательно, мы имеем второй случай. Значит, - циклическая подгруппа порядка . Понятно, что . Если , то подгруппа нормальна в группе , и поэтому . Полученное противоречие показывает, что . Таким образом, - группа типа (6). Пусть теперь . Если порядок , то , и поэтому - группа типа (4). Предположим, что порядок . Пусть - максимальная подгруппа группы и - максимальная подгруппа группы . Из того, что , следует, что - неединичная подгруппа. Так как подгруппа нильпотентна, то . Но как мы уже знаем, - циклическая подгруппа и поэтому . Следовательно, . Пусть - произвольная подгруппа порядка группы . Ясно, что - -максимальная подгруппа группы и - -максимальная подгруппа группы . Значит, по условию подгруппы и перестановочны. Так как - абелева подгруппа, то - нормальная подгруппа в группе . Заметим, что поскольку , то
является нормальной подгруппой в и поэтому - нормальная подгруппа в группе . Это означает, что - группа типа (5).
II. .
Пусть - некоторая силовская -подгруппа группы , - некоторая силовская -подгруппа группы и - некоторая силовская -подгруппа группы , где - различные простые делители порядка группы . Пусть - произвольная нормальная максимальная подгруппа группы . Так как - разрешимая группа, то индекс подгруппы в группе равен некоторому простому числу. Пусть, например, индекс равен . Ввиду следствия , - либо нильпотентная подгруппа, либо ненильпотентная группа порядка .
1. Предположим, что - нильпотентная подгруппа. Пусть - силовская -подгруппа группы , - силовская -подгруппа группы и - силовская -подгруппа группы . Тогда . Так как и , то и - нормальные подгруппы в группе . Из того, что индекс подгруппы равен , следует, что и - силовские подгруппы группы и поэтому и . Понятно, что для некоторого имеет место и поэтому, не теряя общности, мы можем полагать, что . Следовательно, . Ясно, что не является нормальной подгруппой в группе .
Если подгруппы и нильпотентны, то и , и поэтому - нормальная подгруппа в группе . Значит, подгруппы и не могут быть обе нильпотентными подгруппами. Следовательно, возможны следующие случаи.
а) и - группы Шмидта.
Так как , то ввиду следствия , - подгруппа простого порядка и - циклическая подгруппа, которая не является нормальной в группе , но максимальная подгруппа группы нормальна в . Аналогично видим, что - подгруппа простого порядка и - нормальная подгруппа в . Отсюда следует, что - нормальная подгруппа в , и поэтому является группой типа (7).
б) Одна из подгрупп , является нильпотентной, а другая - группой Шмидта.
Пусть например, - группа Шмидта и - нильпотентная подгруппа. Из следствия следует, что - группа простого порядка , - циклическая группа и максимальная подгруппа из нормальна в . Так как - нильпотентная группа, то . Из того, что следует, что - нормальная подгруппа в группе . Значит, ввиду леммы , - нормальная максимальная подгруппа в группе и поэтому . Следовательно, - группа простого порядка .
Из того, что - нильпотентная подгруппа и - циклическая группа следует, что - нормальная подгруппа в . Следовательно, - нормальная подгруппа в группе , т.е. - группа типа (7).
2. Предположим теперь, что - ненильпотентная группа.
Из следствия следует, что , где - группа простого порядка и - циклическая группа, которая не является нормальной в группе , но максимальная подгруппа из нормальна в . Так как - характеристическая подгруппа в и - нормальная подгруппа в , то - нормальная подгруппа в . Из того, что - нормальная максимальная подгруппа в группе , следует, что - группа простого порядка .
Покажем теперь, что - нормальная подгруппа в группе . Так как , то - -максимальная подгруппа группы . Пусть - -максимальная подгруппа группы . Тогда - -максимальная подгруппа группы для любого . По условию - подгруппа группы . Поскольку порядок
делит , то . Таким образом для любого , т.е. . Так как - нормальная подгруппа в группе , то , и поэтому . Отсюда получаем, что - нормальная подгруппа в группе . Поскольку - -максимальная подгруппа, то согласно следствия, - нильпотентная группа, и поэтому . Это означает, что - нормальная подгруппа в группе . Таким образом, группа является группой типа (7).
Итак, - группа одного из типов (1) - (7) теоремы.
Достаточность. Покажем, что в группе каждая -максимальная подгруппа перестановочна со всеми -максимальными подгруппами группы .
Пусть - группа типа (1) или (2). Ввиду леммы , в группе каждая -максимальная подгруппа перестановочна со всеми -максимальными подгруппами группы .
Пусть - группа типа (3). Тогда и , где - группа простого порядка , - нециклическая группа и все ее максимальные подгруппы, отличные от , цикличны. Пусть .
Так как , то , и поэтому в группе существует нильпотентная максимальная подгруппа, индекс которой равен . Пусть - произвольная нильпотентная максимальная подгруппа группы с индексом . Тогда . Так как - максимальная подгруппа группы , то - нормальная подгруппа в , и следовательно,
Значит, - единственная нильпотентная максимальная подгруппа, индекс которой равен .
Пусть - произвольная максимальная подгруппа в и - максимальная подгруппа в . Пусть - произвольная максимальная подгруппа в , - максимальная подгруппа в , - максимальная подгруппа в .
1. Если и - нильпотентные подгруппы группы индекса , то . Так как - максимальная подгруппа группы , то - нормальная подгруппа в , и следовательно, перестановочна с .
2. Предположим, что является ненильпотентной подгруппой. Так как , то . Из того, что , следует, что - циклическая подгруппа. Так как , то - максимальная подгруппа группы , и поэтому - нормальная подгруппа в группе . Из того, что , следует, что . Следовательно, - нильпотентная максимальная подгруппа группы , индекс которой равен . Если - максимальная подгруппа группы такая, что , то - -подгруппа, и поэтому - нильпотентная подгруппа. Пусть - произвольная максимльная подгруппа группы , индекс которой равен . Так как , то . Следовательно, для некоторого мы имеем . Без ограничения общности можно полагать, что . Так как - максимальная подгруппа циклической группы , то , и поэтому - нильпотентная максимальная подгруппа. Следовательно, - группа Шмидта. Значит, и поэтому , где - циклическая -подгруппа.
Если , то . Так как - подгруппа циклической группы , то . Из того, что - максимальная подгруппа группы , следует, что - нормальная подгруппа в . Отсюда следует, что - нормальная подгруппа в группе и поэтому . Это означает, что подгруппа перестановочна со всеми 2-максимальными подгруппами группы .
Если , то - подгруппа циклической группы и поэтому - нормальная подгруппа в . Так как группа нильпотентна, то - нормальная подгруппа в . Отсюда следует, что - нормальная подгруппа в и поэтому перестановочна со всеми 2-максимальными подгруппами группы .
3. Предположим теперь, что - нильпотентная группа, такая что , и не является нильпотентнай подгруппой. Тогда . Рассуждая как выше видим, что - группа Шмидта. Так как , то имеет вид
,
где - циклическая -группа.
Если , то . Но - подгруппа циклической группы и поэтому . Из того, что - максимальная подгруппа группы , следует, что - нормальная подгруппа в . Отсюда следует, что - нормальная подгруппа в группе и поэтому мы имеем , что влечет перестановочность подгруппы со всеми -максимальными подгруппами группы , в частности с .
Если , то подгруппа содержится в некоторой силовской -подгруппе группы . Так как - максимальная подгруппа группы , то и поэтому . Следовательно, - максимальная подгруппа группы . Значит, - нормальная подгруппа в . Так как - нильпотентная группа, такая что , то . Ясно, что - нормальная подгруппа группы . Если , то имеет вид . Так как , то имеет место и поэтому
.
Это означает, что подгруппы и перестановочны. Если , то и поэтому . Следовательно, подгруппы и перестановочны.
4. Если , то подгруппа является максимальной подгруппой группы индекса и - 2-максимальная подгруппа в . Но подгруппы такого вида уже изучены.
5. Если , то подгруппа является максимальной подгруппой группы с индексом и - максимальная подгруппа группы . Но как мы уже знаем, максимальные подгруппы группы перестановочны со всеми -максимальными подгруппами группы .
Это означает, что в любом случае перестановочна со всеми -максимальными подгруппами группы .
Легко видеть, что в группе типа (4) каждая -максимальная подгруппа группы перестановочна со всеми -максимальными подгруппами группы .
Пусть - группа типа (5). Легко видеть, что в группе все -максимальные подгруппы группы нормальны в группе . Таким образом, каждая -максимальная подгруппа группы перестановочна со всеми -максимальными подгруппами группы .
Пусть - группа типа (6). Пусть - максимальная подгруппа группы . Понятно, что либо , либо , где . Отсюда следует, что - единственная неединичная -максимальная подгруппа группы . Так как , то - нормальная подгруппа в группе , и поэтому подгруппа перестановочна со всеми -максимальнаыми подгруппами группы .
Пусть - группа типа (7). Тогда , где - подгруппа группы простого порядка , - подгруппа группы простого порядка и - циклическая -подгруппа группы , которая не является нормальной подгруппой в группе , но максимальная подгруппа группы нормальна в . Покажем, что в группе любая -максимальная подгруппа группы перестановочна со всеми -максимальными подгруппами группы . Предположим, что данное утверждение не верно, и пусть - контрпример минимального порядка.
Предположим, что . Пусть - -максимальная подгруппа группы . Понятно, что - нормальная подгруппа группы . Следовательно, перестановочна с любой -максимальной подгруппой группы . Полученное противоречие с выбором группы показывает, что .
Пусть - подгруппа группы с индексом . Так как , то - неединичная подгруппа группы . Ясно, что - нормальная подгруппа группы . Факторгруппа имеет вид , где - силовская подгруппа порядка , - силовская подгруппа порядка , - циклическая силовская -подгруппа, которая не является нормальной подгруппой в , но максимальная подгруппа группы нормальна в группе . Поскольку , то и поэтому по выбору группы мы заключаем, что любая -максимальная подгруппа группы перестановочна со всеми -максимальными подгруппами группы . Пусть - произвольная -максимальная подгруппа группы и - -максимальная подгруппа группы . Понятно, что и . Отсюда следует, что - -максимальная подгруппа группы и - -максимальная подгруппа группы , и поэтому
Следовательно, подгруппы и перестановочны. Полученное противоречие с выбором группы заканчивает доказательство теоремы.
Если в группе любая ее -максимальная подгруппа перестановочна со всеми -максимальными подгруппами группы и , то - нильпотентная группа.
Классы групп типов (1) -(7), очевидно, попарно не пересекаются. Покажем, что все это классы не пусты. Но фактически мы должны установить это лишь для классов (2), (3), (5) - (7).
Хорошо известно, что в группе автоморфизмов группы кватернионов имеется элемент порядка . Пусть . Тогда принадлежит типу (2). Действительно, пусть - единственная подгруппа порядка 2 группы . Тогда и поэтому . Понятно, что - главный фактор группы и кроме того, . Таким образом, - максимальная подгруппа группы и все максимальные в подгруппы, индекс которых делится на 2, сопряжены с . Следовательно, - группа Шмидта.
Пусть
и - группа порядка 7. Ввиду леммы , - абелева группа порядка 9. Поскольку изоморфна некоторой подгруппе порядка 3 из группы автоморфизмов , то - группа операторов для с . Пусть . Ясно, что - -максимальная подгруппа группы и не является нормальной подгруппой группы . Легко проверить, что все максимальные подгруппы группы , отличные от , цикличны и не являются нормальными подгруппами группы и поэтому - группа типа (3).
Пусть теперь и - такие простые числа, что делит . Тогда если - группа порядка , то в группе ее автоморфизмов имеется подгруппа порядка . Пусть , где - группа порядка . Тогда - группа операторов для с и поэтому группа принадлежит типу (3).
Пусть снова и - группы, введенные в примере, и , где Пусть - канонический эпиморфизм группы на факторгруппу . Пусть - прямое произведение групп и с объединенной факторгруппой (см. лемму ). Пусть - силовская -подгруппа группы . Тогда , где и поэтому
, где
Покажем, что . Поскольку и , то . Следовательно, и поэтому . Значит, . Так как и , то и поэтому . Пусть - неединичная подгруппа из . Ясно, что . Пусть . Мы имеем
Значит, и поэтому . Следовательно, - нормальная погруппа в . Таким образом, группа принадлежит типу (5).
Пусть - циклическая группа порядка , где - простое нечетное число. Согласно лемме , . Пусть теперь - произвольный простой делитель числа и - группа порядка в . Обозначим символом полупрямое произведение . Пусть - подгруппа порядка группы . Тогда и поэтому если , то согласно лемме , , что противоречит определению группы . Следовательно, , что влечет . Значит, группа принадлежит типу(6).
Покажем, наконец, что класс групп (7) не пуст. Пусть и - группы нечетных простых порядков и соответственно (). Тогда
и поэтому найдется такой простой делитель числа , который одновременно отличен от и . Пусть , где - группа порядка в . Тогда группа принадлежит типу (7).
В данном разделе дано описание групп, у которых каждая максимальная подгруппа группы перестановочна со всеми ее -максимальными подгруппами.
Для доказательства основного результата данного раздела нам понадобятся следующие леммы.
Класс всех таких абелевых групп ,что не содержит кубов, является формацией.
Доказательство.
Пусть . И пусть - произвольная нормальная подгруппа группы . Тогда абелева. Так как по определению экспоненты делит и поскольку не содержит кубов, то не содержит кубов. Следовательно, .
Пусть и . Покажем, что
.
Пусть . Тогда , где и . Так как , то по определению экспоненты . Из того, что и не содержат кубов, следует, что не содержит кубов. Поскольку группа изоморфна подгруппе из , то делит , и поэтому не содержит кубов. Так как группа абелева, то . Следовательно, - формация. Лемма доказана.
[4.1]. Пусть , где - формация, описанная в лемме. Если каждая максимальная подгруппа группы перестановочна с любой -максимальной подгруппой группы , то .
Доказательство. Предположим, что лемма не верна, и пусть - контрпример минимального порядка. Доказательство разобьем на следующие этапы.
(1) Для любой неединичной нормальной подгруппы группы , факторгруппа .
Пусть - максимальная подгруппа группы и - -максимальная подгруппа группы . Тогда - максимальная подгруппа группы и - -максимальная подгруппа группы . Из того, что по условию подгруппы и перестановочны, мы имеем
Поскольку , то и поэтому по выбору группы мы заключаем, что .
(2) имеет единственную минимальную нормальную подгруппу для некоторого простого , и где - максимальная подгруппа группы с .
Пусть - минимальная нормальная подгруппа группы . Ввиду леммы, - разрешимая группа, и поэтому - элементарная абелева -группа для некоторого простого . Так как - насыщенная формация , то ввиду (1), - единственная минимальная нормальная подгруппа группы и . Пусть - максимальная подгруппа группы , не содержащая и . По тождеству Дедекинда, мы имеем . Из того, что абелева, следует, что и поэтому . Это показывает, что , .
(3) Заключительное противоречие.
Ввиду (2), для некоторой максимальной подгруппы группы имеем . Так как , то . Пусть - -максимальная подгруппа группы . Тогда по условию, для каждого . По лемме , и поэтому . Следовательно, . Это означает, что каждая -максимальная подгруппа группы единичная, и следовательно, - простое число для всех максимальных подгруппы группы . Так как для некоторого простого , то - максимальная подгруппа группы . Это означает, что - -максимальная подгруппа группы .
Предположим, что . Тогда в имеется неединичная максимальная подгруппа . Ясно, что - -максимальная подгруппа группы , и поэтому перестановочна с . Следовательно, , но . Полученное противоречие показывает, что .
Поскольку ввиду (1),
, то - нильпотентная подгруппа.
Из того, что - неединичная нормальная подгруппа в группе , следует, что .
Так как факторгруппа изоморфна подгруппе группы автоморфизмов и группа автоморфизмов группы простого порядка является циклической группой порядка , то абелева. Из того, что и не содержит кубов, следует, что не содержит кубов. Это означает, что . Следовательно, , и поэтому - нильпотентная подгруппа. Таким образом, . Полученное противоречие с выбором группы доказывает лемму.
[4.1]. В примитивной группе каждая максимальная подгруппа группы перестановочна со всеми -максимальными подгруппами группы тогда и только тогда, когда группа имеет вид:
(1) ,
где - группа порядка и - группа порядка , где ;
(2) ,
где - минимальная нормальная подгруппа в порядка и - группа порядка , где ;
(3) ,
где - группа порядка и - группа порядка , где .
(4) ,
где - группа порядка и - группа порядка , где - различные простые делители порядка группы .
Доказательство. Необходимость. Так как ввиду теоремы, группа разрешима, то , где - примитиватор группы и - единственная минимальная нормальная подгруппа группы , . Ввиду леммы , .
Пусть - произвольная максимальная подгруппа группы и - максимальная подгруппа группы . Ясно, что - -максимальная подгруппа группы . По условию подгруппы и перестановочны. Следовательно, для любого , - подгруппа группы , и поэтому либо , либо . Ввиду леммы, первый случай не возможен. Следовательно, . Это означает, что для любого . Значит, . Следовательно, в группе все -максимальные подгруппы единичны. Это означает, что либо , либо , либо .
1. Пусть . Если , то группа принадлежит типу (1). Если , то группа принадлежит типу (3).
2. Пусть . Допустим, что . Ясно, что - -максимальная подгруппа группы . Пусть - максимальная подгруппа группы . Тогда - -максимальная подгруппа группы . По условию подгруппы и перестановочны. Следовательно, . Полученное противоречие показывает, что . В этом случае - группа типа (2).
3. Пусть . Рассуждая как выше, видим, что . Значит, - группа типа (4).
Достаточность очевидна. Лемма доказана.
Поскольку в любой нильпотентной группе максимальная подгруппа нормальна, то все они перестановочны со всеми -максимальными подгруппами группы . Опишем теперь ненильпотентные группы, у которых каждая максимальная подгруппа перестановочна со всеми -максимальными подруппами.
[4.2]. В ненильпотентной группе каждая ее максимальная подгруппа перестановочна со всеми -максимальными подгруппами группы тогда и только тогда, когда либо где - различные простые числа и либо - группа типа (2) из теоремы
, либо - сверхразрешимая группа одного из следующих типов:
(1) ,
где - группа простого порядка , а - такая бипримарная группа с циклическими силовскими подгруппами, что , где и ;
(2) ,
где - группа простого порядка , - циклическая -группа с () и ;
(3) ,
где - группа простого порядка , - -группа с (), и все максимальные подгруппы в , отличные от , цикличны.
Доказательство. Необходимость.
Пусть - группа, в которой каждая максимальная подгруппа перестановочна с любой -максимальной подгруппой группы .
Поскольку - ненильпотентная группа, то в ней существует максимальная подгруппа , которая не является нормальной в . Тогда . Следовательно, - примитивная группа, которая удовлетворяет условиям леммы .
I. Пусть , где и - простые числа (не обязательно различные). Ввиду леммы , и .
Так как , то содержится в некоторой максимальной подгруппе группы . Пусть - произвольная максимальная подгруппа группы и - максимальная подгруппа группы . Ясно, что - -максимальная подгруппа группы . Следовательно, для любого подгруппы и перестановочны. Это означает, что . Поскольку , то либо , либо . Ясно, что первый случай не возможен. Следовательно, - единственная максимальная подгруппа группы , и поэтому - примарная циклическая группа. Ввиду произвольного выбора , - примарная циклическая группа.
Пусть . Тогда для некоторого . Пусть - силовская -подгруппа группы , - силовская -подгруппа группы и - силовская -подгруппа группы . Так как
,
то - группа порядка и . Из того, что факторгруппа сверхразрешима и подгруппа циклическая, следует, что - сверхразрешимая группа. Допустим, что - наибольший простой делитель порядка группы . Тогда и поэтому . Значит, и , противоречие. Если - наибольший простой делитель порядка группы , то рассуждая как выше видим, что и . Полученное противоречие показывает, что - наибольший простой делитель порядка группы . Значит, - нормальная подгруппа в группе . Если , то и , где - группа порядка , - -группа. Ясно, что - единственная -максимальная подгруппа в . Поскольку - неприводимая абелева группа автоморфизмов группы , то - циклическая группа и поэтому - циклическая группа. Следовательно, - группа типа (2).
Пусть теперь . Поскольку в группе все максимальные подгруппы примарны и цикличны, то и поэтому .
II. Пусть . Согласно лемме , , где - минимальная нормальная подгруппа в группе и либо , либо .
1. Пусть .
Пусть - силовская -подгруппа группы .
Пусть - произвольная максимальная подгруппа группы , отличная от . Рассуждая как выше видим, что - примарная циклическая группа. Значит, .
Предположим, что - -группа. Тогда . Пусть - максимальная подгруппа группы .
Допустим, что . Ясно, что - -максимальная подгруппа группы . Пусть - максимальная подгруппа группы такая, что . Тогда - -максимальная подгруппа группы , и следовательно, - подгруппа группы , что влечет
Полученное противоречие показывает, что и поэтому . Значит, , где - минимальная нормальная подгруппа группы порядка и . Следовательно, .
Пусть теперь и . Пусть - силовская -подгруппа в и - максимальная подгруппа группы , которая содержит . Тогда .
Так как - циклическая силовская -подгруппа группы , то - -сверхразрешимая группа.
Предположим, что . Пусть - силовская -подгруппа группы и пусть - максимальная подгруппа группы . Тогда . Допустим, что . Тогда ввиду леммы , - сверхразрешимая группа, и поэтому - нормальная подгруппа в группе . Пусть - силовская -подгруппа группы . Так как - нормальная максимальная подгруппа в группе , то . Поскольку сверхразрешима, то , и поэтому - нормальная подгруппа в группе . Из того, что - циклическая группа, следует, что . Значит, - нормальная подгруппа в группе . Предположим, что . Пусть - максимальная подгруппа группы , такая что . Ясно, что - -максимальная подгруппа группы . Поскольку по условию подгруппы и перестановочны, то
противоречие. Следовательно, . Пусть теперь - произвольная максимальная подгруппа группы . Поскольку - -максимальлная подгруппа группы , то
Полученное противоречие показывает, что . Значит, и . Так как - максимальная подгруппа группы , то - минимальная нормальная подгруппа в группе . Из того, что - силовская -подгруппа группы , следует, что . Ясно, что . Следовательно, , и поэтому - нормальная подгруппа в группе . Допустим, что . Пусть - максимальная подгруппа группы , такая что . Рассуждая как выше видим, что
противоречие. С другой стороны, если , то как и выше получаем, что
что невозможно. Следовательно, .
Предположим теперь, что . Допустим, что . Пусть - максимальная подгруппа группы , такая что . Поскольку - максимальная подгруппа группы и , то - -максимальная подгруппа группы . По условию - подгруппа группы . Следовательно, , противоречие. Используя приведенные выше рассуждения можно показать, что при этот случай также невозможен.
Полученное противоречие показывает, что . Пусть . Тогда , и поэтому - нормальная силовская -подгруппа в группе . Значит, , где . Пусть - максимальная подгруппа группы такая, что - максимальная подгруппа в . Пусть - произвольная максимальная подгруппа группы . Ясно, что - -максимальная подгруппа группы . Поскольку , то и поэтому . Значит, - единственная максимальная подгруппа группы . Следовательно, - циклическая группа. Пусть - произвольная максимальная подгруппа группы , отличная от . Так как
,
то . С другой стороны, и поэтому - максимальная подгруппа группы . Пусть - максимальная подгруппа группы , отличная от . Ясно, что - -максимальная подгруппа группы . Поскольку подгруппы и перестановочны и , то и поэтому . Следовательно, - единственная -максимальная подгруппа группы . Значит, согласно теореме , - либо циклическая группа, либо группа кватернионов порядка . Пусть имеет место первый случай. Тогда . Это означает, что - нормальная подгруппа в , и поэтому Полученное противоречие показывает, что первый случай невозможен. Следовательно, , где - группа кватернионов порядка и - группа порядка .
Пусть теперь . Пусть - максимальная подгруппа группы . Тогда - -максимальная подгруппа группы , и, следовательно, - подгруппа группы . Но поскольку , то этот случай невозможен.
2. Для любой максимальной и не нормальной в подгруппы имеет место , где и - различые простые числа. Более того, мы теперь уже можем предполагать, что индекс любой максимальной в подгруппы есть простое число. Это означает, что группа сверхразрешима, что в свою очередь влечет сверхразрешимость подгруппы . Пусть - произвольная максимальная подгруппа группы , отличная от . Рассуждая как выше видим, что - примарная циклическая подгруппа и поэтому для некоторых и . Следовательно, . Пусть - силовская -подгруппа группы , пусть - силовская -подгруппа группы , которая содержится в и пусть - силовская -подгруппа группы , которая содержится в . Если - нормальная подгруппа группы , то . Полученное противоречие показывает, что не является нормальной подгруппой группы .
Допустим, что . Тогда - силовская -подгруппа группы и . Из сверхразрешимости группы следует, что - нормальная подгруппа группы . Значит, , где - группа простого порядка . Ясно, что и поэтому . Поскольку все максимальные подгруппы группы , отличные от , цикличны, то - группа типа (3).
Пусть . Тогда и - нормальная подгруппа группы . Значит, . Так как - максимальная подгруппа группы , то - циклическая подгруппа и . Если , то . Если , то - группа типа (1).
Пусть теперь, - различные простые числа. Тогда и . Если - нормальная подгруппа группы , то и поэтому - группа типа (1). Пусть не является нормальной подгруппой группы . Тогда - наибольший простой делитель порядка группы и поэтому - нормальная подгруппа группы . Пусть - максимальная подгруппа группы , такая что и . Допустим, что - нормальная подгруппа группы . Значит, в ней существует нормальная силовская подгруппа. Если , то и поэтому - нормальная подгруппа группы . Полученное противоречие показывает, что для некоторого , - нормальная подгруппа группы . Следовательно, - нормальная подгруппа группы , противоречие. Значит, не является нормальной подгруппой в группе . Рассуждая как выше видим, что у все максимальные подгруппы отличные от примарны и цикличны и . Значит, - группа типа (1).
Достаточность. Если и , то очевидно, что любая -максимальная погруппа группы перестановочна с ее максимальными подгруппами.
Пусть - группа Шмидта, где - группа кватернионов порядка и - группа порядка . Ясно, что в группе -максимальные подгруппы перестановочны со всеми максимальными подгруппами.
Предположим теперь, что - группа типа (1)-(3). Пусть - произвольная максимальная подгруппа группы и - -максимальная подгруппа группы . Докажем, что подгруппы и перестановочны.
Пусть - группа типа (1). Пусть .
1. Пусть , где - простое число, отличное от . Пусть - силовская -подгруппа группы , которая содержится в . Тогда .
Допустим, что . Поскольку группа сверхразрешима, то индекс максимальной подгруппы является простым числом.
Пусть . Тогда . Значит, . Поскольку
,
то - максимальная в подгруппа. Если , то - примарная циклическая группа. Так как делит , то , и поэтому для некоторого , . Полученное противоречие показывает, что . Это означает, что - нормальная подгруппа в .
Допустим, что . Пусть . Тогда - нормальная подгруппа в . Поскольку в любая максимальная подгруппа индекса совпадает с , то - нормальная подгруппа в и поэтому перестановочна с .
Пусть теперь . Пусть - силовская -подгруппа и - силовская -подгруппа в соответственно. Пусть . Тогда и поэтому для некоторого , . Из того, что , следует, что - максимальная подгруппа группы . С другой стороны, - максимальная подгруппа циклической группы . Значит, . Отсюда следует, что и поэтому - нормальная подруппа в . Следовательно, перестановочна с . Пусть . Тогда для некоторого , . Рассуждая как выше видим, что . Значит, - нормальная подгруппа в . Поскольку
,
то . Это означает, что подгруппы и перестановочны. Пусть . Используя приведенные выше рассуждения видим, что - нормальная подгруппа в . Поскольку , то - нормальная подгруппа в . Следовательно, подгруппы и перестановочны. Пусть . Рассуждая как выше видим, что - нормальная подгруппа в и . Значит, . Следовательно, подгруппы и перестановочны. Пусть теперь . Поскольку , то - нормальная подгруппа в . Пусть . Тогда , где . Пусть - силовская -подгруппа группы . Пусть . Тогда - -группа и для некоторого , . Без ограничения общности можно предположить, что . Поскольку , то . Значит, . Следовательно, подгруппы и перестановочны. Пусть . Тогда . Следовательно, и поэтому подгруппа перестановочна с . Пусть . Тогда . Ясно, что . Следовательно, . Это означает, что подгруппы и перестановочны. Пусть . Тогда . Поскольку , то
и поэтому подгруппы и перестановочны.
Если , то рассуждая подобным образом, получаем, что перестановочна с .
Допустим, что . Так как в все максимальные подгруппы, отличные от , примарные и циклические, то - максимальная подгруппа в . Следовательно, . Это означает, что в группе существует единственная -максимальная подгруппа и она единична. Таким образом, перестановочна с .
2. Пусть теперь .
Пусть . Тогда - нормальная подгруппа в и поэтому перестановочна с . Пусть . Тогда . Поскольку для некоторого , , то без ограничения общности можно предположить, что . Значит, . Если , то и поэтому
Допустим, что . Тогда - -группа. Поскольку для некоторого , и , то и поэтому . Пусть теперь . Пусть - силовская -подгруппа и - силовская -подгруппа в соответственно. Тогда . Ясно, что для некоторого и . Следовательно, и поэтому . Если , то
Если , то
В любом случае, -максимальная подгруппа перестановочна с максимальной подгруппой .
Пусть - группа типа (2) или (3). Если , то . Поскольку , то - -максимальная подгруппа группы . Если , то содержится в некоторой максимальной циклической подгруппе группы . Так как , то - нормальная подгруппа в . Отсюда следует, что
Значит, перестановочна с . Пусть . Если , то для некоторого . Поскольку то
и поэтому перестановочна с . Если , то . Из того, что , следует, что . Значит, перестановочна с .
Пусть теперь . Тогда - -группа и, следовательно, для некоторого , . Без ограничения общности можно предположить, что . Ясно, что - -максимальная подгруппа группы . Пусть - максимальная подгруппа группы , содержащая . Допустим, что . Если , то . Предположим, что . Тогда - циклическая группа. Поскольку , то - максимальная подгруппа группы . Из того, что - циклическая подгруппа следует, что . Значит, . Поскольку , то - нормальная подгруппа в . Отсюда следует, что - нормальная подгруппа в . Значит, перестановочна с .
Пусть . Поскольку - циклическая группа, то - нормальная подгруппа в . Следовательно, перестановочна с . Теорема доказана.
Если в группе любая ее максимальная подгруппа перестановочна со всеми -максимальными подгруппами группы и , то - нильпотентная группа.
Легко видеть, что классы групп теоремы попарно не пересекаются. Отметим, что, как и в случае теоремы, можно построить примеры групп типов (1) - (3).
Заключение
В данной работе дано описание групп, у которых максимальные подгруппы перестановочны с -максимальными подгруппами групп; описание ненильпотентных групп, у которых каждая -максимальная подгруппа перестановочна со всеми -максимальными подгруппами; описание ненильпотентных групп, у которых каждая максимальная подгруппа перестановочна со всеми -максимальными подгруппами. Доказана -разрешимость и найдены оценки -длины групп, у которых каждая -максимальная подгруппа -перестановочна со всеми -максимальными подгруппами, где .
Литература
1.Боровиков М.Т. Группы с перестановочными подгруппами взаимно простых порядков // Вопросы алгебры. Выпуск 5. - Минск: Университетское, 1990. - С. 80-82.
2.Боровиков М.Т. О -разрешимости конечной группы // Арифметическое и подгрупповое строение конечных групп / Под редакцией М.И. Салука. - Минск: Наука и техника, 1986. - С. 3-7.
3.Белоногов В.А. Конечные разрешимые группы с нильпотентными -максимальными подгруппами // Матем. заметки. - 1968. - Т. 3, № 1. - С. 21-32.
4.Беркович Я.Г. Конечные группы с дисперсивными вторыми максимальными подгруппами // Докл. АН СССР. - 1964. - Т. 158, № 5. - С. 1007-1009.
5.Беркович Я.Г. Конечные группы, у которых все -е максимальные подгруппы являются обобщенными группами Шмидта // Мат. заметки. - 1969. - Т. 5, № 1. - С. 129-136.
6.Беркович Я.Г. Конечные неразрешимые группы с абелевыми третьими максимальными подгруппами // Изв. высш. учебн. заведений. Математика. - 1969. - № 7. - С. 10-15.
7.Беркович Я.Г., Пальчик Э.М. О перестановочности подгрупп конечной группы // Сиб. мат. журн. - 1967. - Т. 8, № 4. - С. 741-753.
8.Веньбинь Го, Шам К.П., Скиба А.Н., -накрывающие системы подгрупп для классов -сверхразрешимых и -нильпотентных конечных групп // Сиб. мат. журнал. - 2004. - Т. 45, № 3. - С. 75-92.
9.Голубева О.В., Пальчик Э.М. К теореме Виланда // Весцi НАН Беларусi. Сер. фiз.-матэм. навук. - 2001. - № 3. - С. 135-136.
10.Курносенко Н.М. О факторизации конечных групп сверхразрешимыми и нильпотентными подгруппами // Вопросы алгебры. Выпуск 12. - 1998. С. 113-122.
11.Пальчик Э.М. О -квазинормальных подгруппах // Докл. АН БССР. - 1967. - Т. 11, № 11. - С. 967-969.
12.Пальчик Э.М. О группах, все -максимальные подгруппы которых перестановочны с силовской подгруппой // ИАН БССР. Сер. физ.-матем. наук. - 1968. - № 1. - С. 45-48.
13.Пальчик Э.М. О конечных группах с перестановочными подгруппами // Докл. АН БССР. - 1967. - Т. 11, № 5. - С. 391-392.
|