Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Контрольная работа: Статистическая обработка результатов прямых многоразовых измерений с независимыми равноточными

Название: Статистическая обработка результатов прямых многоразовых измерений с независимыми равноточными
Раздел: Рефераты по математике
Тип: контрольная работа Добавлен 20:57:04 23 декабря 2010 Похожие работы
Просмотров: 86 Комментариев: 19 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно     Скачать

Розрахунково-графічне завдання

з теми:

«Статистична обробка результатів прямих багаторазових вимірювань з незалежними рівноточними спостереженнями»

Виконала:

Студентка групиАП-48б

Арсентьєва К.Г.

Харків 2010


Исходные данные

Экспериментально получены результаты серии наблюдений напряжения U постоянного размера. Результаты наблюдений считаются независимыми и равноточными (по условиям эксперимента). В общем случае они могут содержать систематическую и случайную составляющие погрешности измерений. Указана доверительная вероятность P=0,95 результата измерения.

Задание

По результатам многократных наблюдений определить наиболее достоверное значение измеряемой физической величины и его доверительные границы.

Таблица 1

U(1)=170.02 U(17)=170.20
U(2)=170.41 U(18)=170.30
U(3)=169.95 U(19)=169.59
U(4)=170.17 U(20)=169.95
U(5)=169.95 U(21)=169.77
U(6)=170.01 U(22)=169.84
U(7)=170.26 U(23)=169.95
U(8)=190.23 U(24)=159.84
U(9)=169.84 U(25)=170.33
U(10)=169.73 U(26)=169.73
U(11)=169.74 U(27)=169.91
U(12)=170.21 U(28)=170.35
U(13)=169.76 U(29)=170.20
U(14)=169.67 U(30)=169.88
U(15)=169.83 U(31)=169.60
U(16)=170.35 U(32)=170.50

Доверительная вероятность: P= 0, 99

Доверительные границы:

Разрядность: 5 разрядов*

Количество наблюдений: n = 32

Обработка результатов измерений

Анализируем серию наблюдений на наличие промахов. Если они имеются, то их необходимо исключить из дальнейшей обработки.

При анализе обнаружен один промах U(8)=190.23 и U(24)=159.84 (В). Исключим его из результатов измерений.

Таблица 2

U(1)=170.02 U(16)=170.20
U(2)=170.41 U(17)=170.30
U(3)=169.95 U(18)=169.59
U(4)=170.17 U(19)=169.95
U(5)=169.95 U(20)=169.77
U(6)=170.01 U(21)=169.84
U(7)=170.26 U(22)=169.95
U(8)=169.84 U(23)=170.33
U(9)=169.73 U(24)=169.73
U(10)=169.74 U(25)=169.91
U(11)=170.21 U(26)=170.35
U(12)=169.76 U(27)=170.20
U(13)=169.67 U(28)=169.88
U(14)=169.83 U(29)=169.60
U(15)=170.35 U(30)=170.50

Проверим соответствие экспериментального закона распределения нормальному закону.

Для этого используем составной критерий согласия. Он включает в себя два независимых критерия, их обозначают I и II. Первый из этих критериев (критерий I) обеспечивает проверку соответствия распределения экспериментальных данных нормального закона распределения вблизи центра распределения, а второй критерий (критерий II) – на краях распределения. Если при проверке не удовлетворяется хотя бы один из этих критериев, то гипотеза о нормальности распределения результатов наблюдений отвергается.

Для проверки гипотезы о нормальности распределения исходной серии результатов наблюдений по критерию I вычисляют параметр d, определяемый соотношением:

(1),

где (В) – среднее арифметическое результатов наблюдений Ui , ;

(В) – смещённая оценка СКО результатов наблюдений Ui , .

Для облегчения дальнейших расчетов сведём значения и в таблицу:

Таблица 3

i
1. 0.02 0.0004 0.02
2. 0.41 0.1681 0.41
3. -0.05 0.0025 0.05
4. 0.17 0.0289 0.17
5. -0.05 0.0025 0.05
6. 0.01 0.0001 0.01
7. 0.26 0.0676 0.26
8. -0.16 0.0256 0.16
9. -0.27 0.0729 0.27
10. -0.26 0.0676 0.26
11. 0.21 0.0441 0.21
12. -0.24 0.0576 0.24
13. -0.33 0.1089 0.33
14. -0.17 0.0289 0.17
15. 0.35 0.1225 0.35
16. 0.20 0.04 0.20
17. 0.30 0.09 0.30
18. -0.41 0.1681 0.41
19. -0.05 0.0025 0.05
20. -0.23 0.0529 0.23
21. -0.16 0.0256 0.16
22. -0.05 0.0025 0.05
23. 0.33 0.1089 0.33
24. -0.27 0.0729 0.27
25. -0.09 0.0081 0.09
26. 0.35 0.1225 0.35
27. 0.20 0.04 0.20
28. -0.12 0.0144 0.12
29. -0.4 0.16 0.4
30. 0.5 0.25 0.5

Рассчитаем параметр d в соответствии с формулой (1):

Результаты наблюдений Ui считаются распределёнными по нормальному закону, если выполняется следующее условие


,

где , - квантили распределения параметра d. Их находят по таблице П.1 α-процентных точек распределения параметра d по заданному объёму выборки n и принятому для критерия I уровню значимости α1 . Выберем α1 и α2 из условия α≤α12 , где α=1-Р=1-0,99=0,01.

α1 =0,02 и α2 =0,01.

Для n=15,р=0,95, α=0,02

a)Для n=30,P=0.99 .

26 0.8901
30 У
31 0.8827

Проведём интерполяцию:

Y(d )=0.8901+0.8(0.8827-0.8901)=0.8901-0.0059=0.8842

Для n=30,P=0.99

26 0.7040
30 У
31 0.7110

Проведём интерполяцию:

Y( )=0,7040+0,8(0,7110-0,7040)=0,7040+0,0056=0,7096


0,7096<0,8643<0,8842

Распределение результатов наблюдений соответствует критерию I.

По критерию II, распределение результатов наблюдений соответствует нормальному закону распределения, если не более m разностей превзошли значение

,

где (В) – несмещенная оценка СКО результатов наблюдений Ui ;

- верхняя квантиль распределения интегральной функции нормированного нормального распределения, соответствующая доверительной вероятности Р2 . Значение m и Р2 находим по числу наблюдений n и уровню значимости α2 для критерия II по таблице П.2 приложения. m=2, Р2 =0,99. Затем вычисляем:

По таблице П.3 приложения интегральной функции нормированного нормального распределения находят , соответствующее вычисленному значению функции Ф(): при Ф()=0,995;=2,82;

=2,82*0,2597=0,7323 (В).


Ни одно значение не превосходит величину , следовательно распределение результатов наблюдений удовлетворяет и критерию II, поэтому экспериментальный закон распределения соответствует нормальному закону.

Проведём проверку грубых погрешностей результатов наблюдений (оценки анормальности отдельных результатов наблюдений). Для этого:

а) Составим упорядоченный ряд результатов наблюдений, расположив исходные элементы в порядке возрастания, и выполним их перенумерацию:

Таблица 4

U(1)=169.59 U(16)=169.95
U(2)=169.60 U(17)=169.95
U(3)=169.67 U(18)=170.01
U(4)=169.73 U(19)=170.02
U(5)=169.73 U(20)=170.17
U(6)=169.74 U(21)=170.20
U(7)=169.76 U(22)=170.20
U(8)=169.77 U(23)=170.21
U(9)=169.83 U(24)=170.26
U(10)=169.84 U(25)=170.30
U(11)=169.84 U(26)=170.33
U(12)=169.88 U(27)=170.35
U(13)=169.91 U(28)=170.35
U(14)=169.95 U(29)=170.41
U(15)=169.95 U(30)=170.50

б) Для крайних членов упорядоченного ряда U1 и U15 , которые наиболее удалены от центра распределения (определяемого как среднее арифметическое Ū этого рядя) и поэтому с наибольшей вероятностью могут содержать грубые погрешности, находим модули разностей =(В) и =(В), и для большего из них вычисляем параметр:


в) Для n=30, из таблицы 4 определим =3,071.

Так как ti < tT , поэтому грубых результатов нет.

Вычислим несмещенную оценку СКО результата измерения в соответствии с выражением:

(В).

Определим доверительные границы случайной составляющей погрешности измерений с многократными наблюдениями в зависимости от числа наблюдений n 30 в выборке, не содержащей анормальных результатов, по формуле: , где Z– коэффициент по заданной доверительной вероятности Р=0,99 ; Z =2,58

(В).

Определим доверительные границы суммарной не исключённой систематической составляющей погрешности результатов измерений с многократными наблюдениями:


(В).

Определим доверительные границы суммарной (полной) погрешности измерений с многократными наблюдениями.

Так как , тогда

В.

Запишем результат измерений с многократными наблюдениями:

U= (170,000±0,151) В; Р=0,99

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
trendlive.ru Раскрутила свои видео, сайты с помощью сервиса трендов хештегов сайта trendlive.ru
14:53:44 27 июня 2022
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита05:55:31 05 ноября 2021
.
.05:55:29 05 ноября 2021
.
.05:55:28 05 ноября 2021
.
.05:55:26 05 ноября 2021

Смотреть все комментарии (19)
Работы, похожие на Контрольная работа: Статистическая обработка результатов прямых многоразовых измерений с независимыми равноточными

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(294399)
Комментарии (4230)
Copyright © 2005 - 2024 BestReferat.ru / реклама на сайте