Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Решение задач по прикладной математике

Название: Решение задач по прикладной математике
Раздел: Рефераты по математике
Тип: реферат Добавлен 10:26:26 08 октября 2006 Похожие работы
Просмотров: 63 Комментариев: 22 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно     Скачать

МОСКОВСКАЯ АКАДЕМИЯ ЭКОНОМИКИ И ПРАВА

РЯЗАНСКИЙ ФИЛИАЛ

КОНТРОЛЬНАЯ РАБОТА

По курсу: «ПРИКЛАДНАЯ МАТЕМАТИКА»

Выполнил: ст-т гр. ЭБ - 241

Лебедев Н. В.

Проверил: профессор

Г. И. Королев

Рязань 2003 г.

Задание 1 . Решите, используя формулу полной вероятности, формулу гипотез и формулу Бернулли.

1. Число грузовых автомобилей, проезжающих по шоссе, на котором стоит бензоколонка, относится к числу проезжающих легковых автомобилей как 3:2. Вероятность того, что будет заправляться грузовой автомобиль, равна 0.1. Для легковой автомашины эта вероятность равна 0.2. К бензоколонке подъехала для заправки машина. Найти вероятность того, что это легковой автомобиль.

Решение.

Определим событие, вероятность которого надо посчитать. А - к бензоколонке подъехал автомобиль.

Тогда гипотезы:

Н1- к бензоколонке подъехала грузовая машина.

Н2 - к бензоколонке подъехал легковой автомобиль

Р(Н1) = 3/(2+3) = 0.6;

Р(Н2) = 2/(2+3) = 0.4

По условию

Р(А/Н1)=0.1

Р(А/Н2)=0.2

Тогда вероятность события А вычисляется по формуле:

P(A)=Р(A|Н1)*Р(Н1)+Р(A|Н2)*Р(Н2)= 0.6 0.1 + 0.4 0.2 = 0.06 + 0.08 = 0.14

P(H2|A)=[ Р(A|Н2)*Р(Н2) ]/P(A) = 0.2 0.4/ 0.14 ~ 0.57

2. Вероятность своевременной оплаты счетов шестью потребителями равна 0.8. Найти вероятность того, что к установленному сроку счета не оплатят не более трех потребителей.

Решение.

«Оплатят не более трех потребителей», это значит, что возможны следующие варианты событий:

счета оплатят 0 – потребителей,

1 - потребитель,

2 - потребителя,

3 – потребителя.

По формуле Бернулли найдем вероятность каждого из этих событий.

P_n(k) = C_n(k) pk (1-p)( n - k ) , где C_n(k) =

n = 6, p = 0.8

1. C_6(0) = = = 1

P_6(0) = C_6(0) 0.80 (1-0.8)(6- 0 ) = 1 1 0.26 = 0.000064

2. C_6(1) = = = 6

P_6(1) = C_6(1) 0.81 (1-0.8)(6-1) = 6 0.8 0.25 = 0.001536

3. C_6(2) = = = = 15

P_6(2) = C_6(2) 0.82 (1-0.8)(6-2) = 15 0.64 0.24 = 0.01536

4. C_6(3) = = = = 20

P_6(3) = C_6(3) 0.83 (1-0.8)(6- 3 ) = 20 0.512 0.23 = 0.08192

P = P_6(0) + P_6(1) + P_6(2) + P_6(3) = 0.000064 + 0.001536 + 0.01536 + 0.08192 = = 0. 09888 0.099 - вероятность того, что к установленному сроку счета не оплатят не более трех потребителей.

Задание 2 . Найти среднее квадратическое отклонение вариационного ряда.

X1 800 1000 1200 1400 1600 1800 2000


n1 1 8 23 39 21 6 2

Среднее квадратическое отклонение случайной величины X вычисляется по формуле Fx = , где – дисперсия случайной величины X.

=

- математическое ожидание случайной величины X.

800 1 + 1000 8 + 1200 23 + 1400 39 + 1600 21 + 1800 6 + 2000 2 = 139400

= (800 - 139400) 1 + (1000 - 139400) 8 + (1200 - 139400) 23 + (1400 - -139400) 39 + (1600 - 139400) 21 + (1800 - 139400) 6 + (2000 - 139400) 2 =

= 19209960000 + 153236480000 + 439282520000 + 742716000000 + 398765640000 + + 113602560000 + 37757520000 = 1904570680000

Fx = 1380062

Задание 3 . Решить задачу линейного программирования симплексным методом.

Для производства двух видов изделий используются три вида сырья, запасы которого ограничены. Величины запасов приведены в матрице С. Нормы расхода сырья каждого вида на каждое из двух изделий приведены в матрице А , где строки соответствуют виду сырья, а столбцы – виду изделия. Прибыль от реализации изделий указана в матрице P.

Составить план производства изделий так, чтобы предприятие получило максимальную прибыль от их реализации.

5 9 7710

А = 9 7 C = 8910 P = ( 10 22 )

3 10 7800

Найдем производственную программу, максимизирующую прибыль L=10х1 +22х2 .

Затраты ресурсов 1-го вида на производственную программу 5х1 +9х2 ≤7710.

Затраты ресурсов 2-го вида на производственную программу 9х1 +7х2 ≤8910.

Затраты ресурсов 3-го вида на производственную программу 3х1 +10х2 ≤7800.

Имеем

1 +9х2 ≤ 7710

1 +7х2 ≤ 8910

1 +10х2 ≤ 7800

где по смыслу задачи х1 ≥0, х2 ≥0.

Получена задача на нахождение условного экстремума. Для ее решения систему неравенств при помощи дополнительных неизвестных х3 , х4 , х5 заменим системой линейных алгебраических уравнений

1 +9х23 = 7710

1 +7х24 = 8910

1 +10х25 = 7800

где дополнительные переменные имеют смысл остатков соответствующих ресурсов, а именно

х3 – остаток сырья 1-го вида,

х4 – остаток сырья 2-го вида,

х5 – остаток сырья 3-го вида.

Среди всех решений системы уравнений, удовлетворяющих условию неотрицательности

х1 ≥0, х2 ≥0, х3 ≥0, х4 ≥0, х5 ≥0, надо найти то решение, при котором функция L=10х1 +22х2 будет иметь наибольшее значение.

Ранг матрицы системы уравнений равен 3.

5 9 1 0 0

А = 9 7 0 1 0

3 10 0 0 1

Следовательно, три переменные (базисные) можно выразить через две (свободные), т. е.

х3 = 7710 - 5х1 - 9х2

х4 = 8910 - 9х1 - 7х2

х5 = 7800 - 3х1 - 10х2

Функция L = 10х1 +22х2 или L - 10х1 - 22х2 = 0 уже выражена через эти же свободные переменные. Получаем следующую таблицу.

Таблица 1.

Базисные переменные

Свободные

члены

х1

х2

х3

х4

х5

х3

7710

5

9

1

0

0

х4

8910

9

7

0

1

0

х5

7800

3

10

0

0

1

L

0

-10

-22

0

0

0

Находим в индексной строке отрицательные оценки. Выбираем разрешающий элемент.

В результате получаем следующую таблицу.

Таблица 2.

Базисные переменные

Свободные

члены

х1

х2

х3

х4

х5

х3

7710

5

9

1

0

0

х4

990

1

7/9

0

1/9

0

х5

7800

3

10

0

0

1

L

0

-10

-22

0

0

0

Таблица 3.

Базисные переменные

Свободные

члены

х1

х2

х3

х4

х5

х3

2760

0

46/9

1

-5/9

0

х1

990

1

7/9

0

1/9

0

х5

4830

0

69/9

0

-1/3

1

L

9900

0

-128/9

0

10/9

0

Таблица 4.

Базисные переменные

Свободные

члены

х1

х2

х3

х4

х5

х2

540

0

1

9/46

-5/46

0

х1

570

1

0

-7/46

9/46

0

х5

690

0

0

-3/2

1/2

1

L

17580

0

0

128/46

-10/23

0

Таблица 5.

Базисные переменные

Свободные

члены

х1

х2

х3

х4

х5

х2

690

0

1

-3/23

0

10/46

х1

300

1

0

10/23

0

-81/46

х4

1380

0

0

-3

1

2

L

18780

0

0

34/23

0

20/23

Поскольку в индексной строке нет отрицательных оценок, то это значит, что мы получили оптимальную производственная программу:

х1 = 300, х2 = 690, х3 = 0, х4 = 1380, х5 = 0

Остатки ресурсов:

Первого вида – х3 =0;

Второго вида – х4 =1380;

Третьего вида – х5 =0

Максимальная прибыль Lmax =18780.


Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
trendlive.ru Раскрутила свои видео, сайты с помощью сервиса трендов хештегов сайта trendlive.ru
09:09:14 02 июля 2022
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита02:42:50 05 ноября 2021
.
.02:42:48 05 ноября 2021
.
.02:42:47 05 ноября 2021
.
.02:42:46 05 ноября 2021

Смотреть все комментарии (22)
Работы, похожие на Реферат: Решение задач по прикладной математике

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(294399)
Комментарии (4230)
Copyright © 2005 - 2024 BestReferat.ru / реклама на сайте