Метод найменших квадратів
У процесі вивчення різних питань природознавства, економіки і техніки, соціології, педагогіки доводиться на основі великої кількості дослідних даних виявляти суттєві фактори, які впливають на досліджуваний об’єкт, а також встановлювати форму зв’язку між різними зв’язаними одна з одною величинами (ознаками).
Нехай у результаті досліджень дістали таку таблицю деякої функціональної залежності:
Таблиця 1
x
|
x1
|
x2
|
…
|
xn
|
y
|
y1
|
y2
|
…
|
yn
|
Треба знайти аналітичний вигляд функції , яка добре відображала б цю таблицю дослідних даних. Функцію можна шукати у вигляді інтерполяційного поліному. Але інтерполяційні поліноми не завжди добре відображають характер поведінки таблично заданої функції. До того ж значення дістають у результаті експерименту, а вони, як правило, сумнівні. У цьому разі задача інтерполювання табличної функції втрачає сенс. Тому шукають таку функцію , значення якої при досить близькі до табличних значень . Формулу називають емпіричною
, або рівнянням регресії
на . Емпіричні формули мають велике практичне значення, вдало підібрана емпірична формула дає змогу не тільки апроксимувати сукупність експериментальних даних, «згладжуючи» значення величини , а й екстраполювати знайдену залежність на інші проміжки значень .
Процес побудови емпіричних формул складається з двох етапів: встановлення загального виду цієї формули і визначення найкращих її параметрів.
Щоб встановити вигляд емпіричної формули, на площині будують точки з координатами . Деякі з цих точок сполучають плавною кривою, яку проводять так, щоб вона проходила якомога ближче до всіх даних точок. Після цього візуально визначають, графік якої з відомих нам функцій найкраще підходить до побудованої кривої. Звичайно, намагаються підібрати найпростіші функції: лінійну, квадратичну, дробово-раціональну, степеневу, показникову, логарифмічну.
Встановивши вигляд емпіричної формули, треба знайти її параметри (коефіцієнти). Найточніші значення коефіцієнтів емпіричної формули визначають методом найменших квадратів
. Цей метод запропонували відомі математики К. Гаусс і А. Лежандр.
Розглянемо суть методу найменших квадратів.
Нехай емпірична формула має вигляд
, (1)
де , , …, - невідомі коефіцієнти. Треба знайти такі значення коефіцієнтів , за яких крива (1) якомога ближче проходитиме до всіх точок , , …, , знайдених експериментально. Зрозуміло, що жодна з експериментальних точок не задовольняє точно рівняння (1). Відхилення від підстановки координат у рівняння (1) дорівнюватимуть величинам .
За методом найменших квадратів найкращі значення коефіцієнтів ті, для яких сума квадратів відхилень
(2)
дослідних даних від обчислених за емпіричною формулою (1) найменша. Звідси випливає, що величина (2), яка є функцією від коефіцієнтів , повинна мати мінімум. Необхідна умов мінімуму функції багатьох змінних ─ її частинні похідні мають дорівнювати нулю, тобто
, , …, .
Диференціюючи вираз (2) по невідомих параметрах , матимемо відносно них систему рівнянь:
Система (3) називається нормальною
. Якщо вона має розв’язок, то він єдиний, і буде шуканим.
Якщо емпірична функція (1) лінійна відносно параметрів , то нормальна система (3) буде системою з лінійних рівнянь відносно шуканих параметрів.
Будуючи емпіричні формули, припускатимемо, що експериментальні дані додатні.
Якщо серед значень і є від’ємні, то завжди можна знайти такі додатні числа і , що і .
Тому розв’язування поставленої задачі завжди можна звести до побудови емпіричної формули для додатних значень .
Побудова лінійної емпіричної формули.
Нехай між даними існує лінійна залежність. Шукатимемо емпіричну формулу у вигляді
, (4)
де коефіцієнти і невідомі.
Знайдемо значення і , за яких функція матиме мінімальне значення. Щоб знайти ці значення, прирівняємо до нуля частинні похідні функції
Звідси, врахувавши, що , маємо
(5)
Розв’язавши відносно і останню систему, знайдемо
, (6)
. (7)
Зазначимо, що, крім графічного, є ще й аналітичний критерій виявлення лінійної залежності між значеннями і .
Покладемо , , .
Якщо , то залежність між і лінійна, бо точки лежатимуть на одній прямій. Якщо , то між і існує майже лінійна залежність, оскільки точки лежатимуть близько до деякої прямої.
Побудова квадратичної емпіричної залежності.
Нехай функціональна залежність між та - квадратична. Шукатимемо емпіричну формулу у вигляді
. (8)
Тоді формулу (2) запишемо наступним чином
Для знаходження коефіцієнтів , , , за яких функція мінімальна, обчислимо частинні похідні , , і прирівняємо їх до нуля. В результаті дістанемо систему рівнянь
Після рівносильних перетворень маємо систему
(9)
Розв’язок цієї системи і визначає єдину параболу, яка краще від усіх інших парабол (8) подає на розглядуваному проміжку задану таблично функціональну залежність.
Сформулюємо аналітичний критерій для квадратичної залежності. Для цього введемо поділені різниці першого і другого порядку
і , де .
Точки розміщені на параболі (8) тоді і тільки тоді, коли всі поділені різниці другого порядку зберігають сталі значення.
Якщо точки рівновіддалені, тобто , то для існування квадратичної залежності (8) необхідно і достатньо, щоб була сталою скінчена різниця другого порядку , причому .
Побудова емпіричних формул найпростіших нелінійних залежностей.
Нехай у системі координат маємо нелінійну залежність , неперервну і монотонну на відрізку .
Введемо змінні , так, щоб у новій системі координат задана емпірична нелінійна залежність стала лінійною
. (10)
Тоді точки з координатами в площині лежатимуть на прямій лінії.
Покажемо, як від нелінійних залежностей
, 2) , 3) ,
, 5) , 6)
перейти до лінійних.
1) Розглянемо степеневу залежність , де , , .
Логарифмуючи її, знаходимо . Звідси, поклавши , , , , маємо .
2) Логарифмуючи показникову залежність , маємо . Поклавши , , , в системі координат дістанемо залежність (10).
Зазначимо, що замість показникової залежності часто шукають залежність . Остання перетвориться в лінійну, якщо позначити , , , .
3) Щоб перейти від логарифмічної залежності до лінійної , досить зробити підстановку , .
4) У гіперболічній залежності замінимо змінні , . Тоді гіперболічна залежність перетвориться в лінійну (10), в якій , .
5) Розглянемо дробово-лінійну функцію . Знайдемо обернену функцію . Тоді ввівши нові координати , , дістанемо лінійну залежність (10), де , .
6) Нехай маємо дробово-раціональну залежність . Оберненою до неї буде залежність . Ввівши нові змінні , , дістанемо лінійну залежність (10) з коефіцієнтами , .
Отже, для побудови будь-якої з емпіричних формул 1)-6) треба:
а) за вихідною таблицею даних побудувати нову таблицю , використавши відповідні формули переходу до нових координат;
б) за новою таблицею даних знайти методом найменших квадратів коефіцієнти і лінійної функції (10);
в) за відповідними формулами знайти коефіцієнти і даної нелінійної залежності.
Вибрати емпіричну формулу для нелінійних залежностей графічним методом часто буває важко. Тоді вдаються до перевірки аналітичних критеріїв існування певної залежності. Для цього зводять її до лінійної і перевіряють виконання критерію лінійної залежності між перетвореними вихідними даними . Але є й власні аналітичні критерії наявності кожної з розглянутих вище нелінійних залежностей. Найпростіші необхідні умови їх наявності подано в табл. 2.
Таблиця 2
№ пор.
|
Емпірична формула
|
|
|
Спосіб вирівнювання
|
1
|
|
|
|
|
2
|
|
|
|
, де , , ,
|
3
|
|
|
|
, де , ,
|
4
|
|
|
|
, де
|
5
|
|
|
|
, де
|
6
|
|
|
|
, де
|
7
|
|
|
|
, де ,
|
Умови перевіряють у такий спосіб. На заданому відрізку зміни незалежної змінної вибирають дві точки, досить надійні і розміщені якомога далі одна від одної. Нехай, наприклад, це будуть точки , . Потім, залежно від типу емпіричної формули, що перевіряється, обчислюють значення , яке є або середнім арифметичним, або середнім геометричним, або середнім гармонічним значень , . Маючи значення і аналогічно обчислюють і відповідне значення . Далі, користуючись даною таблицею значень , для значення знаходять відповідне йому значення . Якщо немає в таблиці, то знаходять наближено з побудованого графіка даної залежності або за допомогою лінійної інтерполяції , де і ─ проміжні значення, між якими лежить . Обчисливши , знаходять величину . Якщо ця величина велика, то відповідна емпірична формула не придатна для апроксимації заданих табличних даних. З кількох придатних емпіричних формул перевагу надають тій, для якої відхилення якомога менше.
|