Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Контрольная работа: Доверительные интервалы прогноза. Оценка адекватности и точности моделей

Название: Доверительные интервалы прогноза. Оценка адекватности и точности моделей
Раздел: Рефераты по математике
Тип: контрольная работа Добавлен 16:32:06 14 апреля 2011 Похожие работы
Просмотров: 1702 Комментариев: 15 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно     Скачать

КОНТРОЛЬНАЯ РАБОТА

по дисциплине «Планирование и прогнозирование

в условиях рынка»

на тему: Доверительные интервалы прогноза

Оценка адекватности и точности моделей

Содержание

Глава 1. Теоретическая часть. 3

Глава 2. Практическая часть. 9

Список используемой литературы.. 13


Глава 1. Теоретическаячасть

Доверительные интервалы прогноза. Оценка адекватности и точности моделей

1.1 Доверительные интервалы прогноза

Заключительным этапом применения кривых роста является экстраполяция тенденции на базе выбранного уравнения. Прогнозные значения исследуемого показателя вычисляют путем подстановки в уравнение кривой значений времени t , соответствующих периоду упреждения. Полученный таким образом прогноз называют точечным, так как для каждого момента времени определяется только одно значение прогнозируемого показателя.

На практике в дополнении к точечному прогнозу желательно определить границы возможного изменения прогнозируемого показателя, задать "вилку" возможных значений прогнозируемого показателя, т.е. вычислить прогноз интервальный.

Несовпадение фактических данных с точечным прогнозом, полученным путем экстраполяции тенденции по кривым роста, может быть вызвано:

1. субъективной ошибочностью выбора вида кривой;

2. погрешностью оценивания параметров кривых;

3. погрешностью, связанной с отклонением отдельных наблюдений от тренда, характеризующего некоторый средний уровень ряда на каждый момент времени.

Погрешность, связанная со вторым и третьим источником, может быть отражена в виде доверительного интервала прогноза. Доверительный интервал, учитывающий неопределенность, связанную с положением тренда, и возможность отклонения от этого тренда, определяется в виде:


(1.1.),

где n- длина временного ряда;

L -период упреждения;

yn + L -точечный прогноз на момент n+L;

ta - значение t-статистики Стьюдента;

Sp - средняя квадратическая ошибка прогноза.

Предположим, что тренд характеризуется прямой:

Так как оценки параметров определяются по выборочной совокупности, представленной временным рядом, то они содержат погрешность. Погрешность параметра ао приводит к вертикальному сдвигу прямой, погрешность параметра a1 - к изменению угла наклона прямой относительно оси абсцисс. С учетом разброса конкретных реализаций относительно линий тренда, дисперсию можно представить в виде:

(1.2.),

где - дисперсия отклонений фактических наблюдений от расчетных;

t 1 - время упреждения, для которого делается экстраполяция;

t1 = n + L ;

t - порядковый номер уровней ряда, t = 1,2,..., n;

- порядковый номер уровня, стоящего в середине ряда,

Тогда доверительный интервал можно представить в виде:

(1.3.),

Обозначим корень в выражении (1.3.) через К. Значение К зависит только от n и L, т.е. от длины ряда и периода упреждения. Поэтому можно составить таблицы значений К или К*= ta K . Тогда интервальная оценка будет иметь вид:

(1.4.),

Выражение, аналогичное (1.3.), можно получить для полинома второго порядка:

(1.5.),

или

(1.6.),

Дисперсия отклонений фактических наблюдений от расчетных определяется выражением:


(1.7.),

где yt - фактические значения уровней ряда,

- расчетные значения уровней ряда,

n - длина временного ряда,

k - число оцениваемых параметров выравнивающей кривой.

Таким образом, ширина доверительного интервала зависит от уровня значимости, периода упреждения, среднего квадратического отклонения от тренда и степени полинома.

Чем выше степень полинома, тем шире доверительный интервал при одном и том же значении Sy , так как дисперсия уравнения тренда вычисляется как взвешенная сумма дисперсий соответствующих параметров уравнения

Рисунок 1.1. Доверительные интервалы прогноза для линейного тренда

Доверительные интервалы прогнозов, полученных с использованием уравнения экспоненты, определяют аналогичным образом. Отличие состоит в том, что как при вычислении параметров кривой, так и при вычислении средней квадратической ошибки используют не сами значения уровней временного ряда, а их логарифмы.

По такой же схеме могут быть определены доверительные интервалы для ряда кривых, имеющих асимптоты, в случае, если значение асимптоты известно (например, для модифицированной экспоненты).

В таблице 1.1. приведены значения К* в зависимости от длины временного ряда n и периода упреждения L для прямой и параболы. Очевидно, что при увеличении длины рядов (n ) значения К* уменьшаются, с ростом периода упреждения L значения К* увеличиваются. При этом влияние периода упреждения неодинаково для различных значений n : чем больше длина ряда, тем меньшее влияние оказывает период упреждения L .

Таблица 1.1.

Значения К* для оценки доверительных интервалов прогноза на основе линейного тренда и параболического тренда при доверительной вероятности 0,9 (7).

Линейный тренд Параболический тренд
Длина ряда (п)

Период упреждения (L)

1 2 3

длина ряда (п)

период упреждения (L)

1 2 3

7 2,6380 2,8748 3,1399 7 3,948 5,755 8,152
8 2,4631 2,6391 2,8361 8 3,459 4,754 6,461
9 2,3422 2,4786 2,6310 9 3,144 4,124 5,408
10 2,2524 2,3614 2,4827 10 2,926 3,695 4,698
11 2,1827 2,2718 2,3706 11 2,763 3,384 4,189
12 2,1274 2,2017 2,2836 12 2,636 3,148 3,808
13 2,0837 2,1463 2,2155 13 2,536 2,965 3,516
14 2,0462 2,1000 2,1590 14 2,455 2,830 3,286
15 2,0153 2,0621 2,1131 15 2,386 2,701 3,100
16 1,9883 2,0292 2,0735 16 2,330 2,604 2,950
17 1,9654 2,0015 2,0406 17 2,280 2,521 2,823
18 1,9455 1,9776 2,0124 18 2,238 2,451 2,717
19 1,9280 1,9568 1,9877 19 2,201 2,391 2,627
20 1,9117 1,9375 1,9654 20 2,169 2,339 2,549
21 1,8975 1,9210 1,9461 21 2,139 2,293 2,481
22 1,8854 1,9066 1,9294 22 2,113 2,252 2,422
23 1,8738 1,8932 1,9140 23 2,090 2,217 2,371
24 1,8631 1,8808 1,8998 24 2,069 2,185 2,325
25 1,8538 1,8701 1,8876 25 2,049 2,156 2,284

Глава 2. Практическая часть

Задание 1.5. Использование адаптивных методов в экономическом прогнозировании

1. Рассчитать экспоненциальную среднюю для временного ряда курса акций фирмы ЮМ. В качестве начального значения экспоненциальной средней взять среднее значение из 5 первых уровней ряда. Значение параметра адаптации а принять равным 0,1.

Таблица 1.2.

Курс акций фирмы IBM

t yt t yt t yt
1 510 11 494 21 523
2 497 12 499 22 527
3 504 13 502 23 523
4 510 14 509 24 528
5 509 15 525 25 529
6 503 16 512 26 538
7 500 17 510 27 539
8 500 18 506 28 541
9 500 19 515 29 543
10 495 20 522 30 541

2. По данным задания №1 рассчитать экспоненциальную среднюю при значении параметра адаптации а равным 0,5. Сравнить графически исходный временной ряд и ряды экспоненциальных средних, полученные при а =0,1 и а =0,5. Указать, какой ряд носит более гладкий характер.

3. Прогнозирование курса акций фирмы IBM осуществлялось на основе адаптивной полиномиальной модели второго порядка


,

где - период упреждения.

На последнем шаге получены следующие оценки коэффициентов:

Рассчитать прогноз курса акций:

• на 1 день вперед (=1);

• на 2 дня вперед (=2).

Решение задания 1.5

1. Определим

Найдем значения экспоненциальной средней при а =0,1.

. а =0,1 – по условию;

; S1 = 0,1 х 510 + 0,9 х 506 = 506,4;

; S2 = 0,1 х 497 + 0,9 х 506,4 = 505,46;

; S3 = 0,1 х 504 + 0,9 х 505,46 = 505,31 и т.д.

Результаты расчетов представлены в таблице 1.3.

2.

а =0,5 – по условию.

; S1 = 0,5 х 510 + 0,5 х 506 = 508;

; S2 = 0,5 х 497 + 0,5 х 508 = 502,5 и т.д.

Результаты расчетов представлены в таблице 1.3.

Таблица 1.3.

Экспоненциальные средние

t Экспоненциальная средняя t Экспоненциальная средняя
а =0,1 а =0,5 а =0,1 а =0,5
1 506,4 508 16 505,7 513,3
2 505,5 502,5 17 506,1 511,7
3 505,3 503,2 18 506,1 508,8
4 505,8 506,6 19 507,0 511,9
5 506,1 507,8 20 508,5 517
6 505,8 505,4 21 509,9 520
7 505,2 502,7 22 511,6 523,5
8 504,7 501,4 23 512,8 523,2
9 504,2 500,7 24 514,3 525,6
10 503,4 497,8 25 515,8 527,3
11 502,4 495,9 26 518,0 532,7
12 502,0 497,5 27 520,1 525,8
13 502,0 499,7 28 522,2 538,4
14 502,7 504,4 29 524,3 540,7
15 505,0 514,7 30 525,9 540,9

Рисунок 1.2. Экспоненциальное сглаживание временного ряда курса акций: А – фактические данные; В – экспоненциальная средняя при альфа = 0,1; С – экспоненциальная средняя при альфа = 0,5

При а =0,1 экспоненциальная средняя носит более гладкий характер, т.к. в этом случае в наибольшей степени поглощаются случайные колебания временного ряда.

3. Прогноз по адаптивной полиномиальной модели второго порядка формируется на последнем шаге, путем подстановки в уравнение модели последних значений коэффициентов и значения - времени упреждения.

Прогноз на 1 день вперед (= 1):

(дол.)

Прогноз на 2 дня вперед (= 2):

(дол.)

Список используемой литературы

1. Дуброва Т.А. Статистические методы прогнозирования в экономике: Учебное пособие / Московский государственный университет экономики, статистики и информатики. – М.: МЭСИ, 2003. – 52с.

2. Афанасьев В.Н., Юзбашев М.М. Анализ временных рядов и прогнозирование М.: Финансы и статистика, 2001.

3. Лукашин Ю.П. Регрессионные и адаптивные методы прогнозирования. Учебное пособие. – М.: МЭСИ, 1997.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Привет студентам) если возникают трудности с любой работой (от реферата и контрольных до диплома), можете обратиться на FAST-REFERAT.RU , я там обычно заказываю, все качественно и в срок) в любом случае попробуйте, за спрос денег не берут)
Olya05:23:31 27 августа 2019
.
.05:23:30 27 августа 2019
.
.05:23:29 27 августа 2019
.
.05:23:28 27 августа 2019
.
.05:23:28 27 августа 2019

Смотреть все комментарии (15)
Работы, похожие на Контрольная работа: Доверительные интервалы прогноза. Оценка адекватности и точности моделей

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(294399)
Комментарии (4230)
Copyright © 2005 - 2024 BestReferat.ru / реклама на сайте