1. С помощью принципа возможных перемещений (общего уравнения динамики) определить ускорение центра масс тела А.
2. С помощью принципа Даламбера найти натяжение нити на всех участках. Рассмотрев динамическое равновесие последнего тела, сделать проверку правильности выполненных расчётов.
3. Составить дифференциальное движение Лагранжа и определить ускорение центра масс тела А. Сравнить результат.
4. Найти расстояние S, пройденное центром масс тела А за время t1
= 2 с, и скорость его в этот момент времени.
5. С помощью теоремы об изменении кинетической энергии системы определить скорость центра масс тале А в момент t, когда он пройдёт расстояние S, найденное в п. 4.
Р = 30 Н, G = 15 HF = 20Н, М=300 Нсм R= 0,3 м, r= 0,2 м, g= 10м/с.
Решение.

Рисунок 1
1. Общее уравнение динамики для системы запишется как

(1)
 



Сократив на dj, получим

Или можно записать

Откуда найдём ускорение
м/с (2)
2. Уравнение Лагранжа II рода. Система имеет одну степень свободы, тодга
, (2)
где Qx – обобщённая сила,
Т –кинематическая энергия системы;
q– обобщённая координата
Т=Т1
+Т2
+Т3
Кинематическая энергия основания, вокруг которого вращается ступенчатый цилиндр

- масса основания
Момент инерции цилиндра относительно оси вращения

Где - момент инерции цилиндра относительно оси вращения

Теперь окончательно запишем кинематическую энергию системы
(3)
Частная производная

Где  (q=S) – обобщённая координата
Найдём обобщённую силу
откуда 
Откуда получим окончательное уравнение

(4)
Сравнив выражения (2) и (4) видим, что они полностью идентичны
Ускорение аА
=0,26 м/с найдено верно.
3. Найдём расстояние S, пройденное телом А за время t= 2 с. Так как, движение ускоренное тела А (это груз 1) и начинается из состояния покоя, то скорость его при t= 2 с будет
м/с
А путь пройденный телом А будет
м
4. Используя теорему об изменении кинематической энергии системы
(3)
Так как движение начинается из состоянии покоя, то То=0. А так как система снабжена идеальными связями, то работа внутренних сил . Следовательно (3) запишем как
(6)
где - работа внешних сил и 
Работа внешних сил и будет равна,
Дж

м/с, что совпадает с ранее полученным значением
5. Натяжение нитей
а) Рассмотрим в равновесии груз 1. К нему приложены силы , и , где - сила натяжении нити, удерживающей груз 1.Спроецируем сумму сил на ось х
Забиваем Сайты В ТОП КУВАЛДОЙ - Уникальные возможности от SeoHammer
Каждая ссылка анализируется по трем пакетам оценки: SEO, Трафик и SMM.
SeoHammer делает продвижение сайта прозрачным и простым занятием.
Ссылки, вечные ссылки, статьи, упоминания, пресс-релизы - используйте по максимуму потенциал SeoHammer для продвижения вашего сайта.
Что умеет делать SeoHammer
— Продвижение в один клик, интеллектуальный подбор запросов, покупка самых лучших ссылок с высокой степенью качества у лучших бирж ссылок.
— Регулярная проверка качества ссылок по более чем 100 показателям и ежедневный пересчет показателей качества проекта.
— Все известные форматы ссылок: арендные ссылки, вечные ссылки, публикации (упоминания, мнения, отзывы, статьи, пресс-релизы).
— SeoHammer покажет, где рост или падение, а также запросы, на которые нужно обратить внимание.
SeoHammer еще предоставляет технологию Буст, она ускоряет продвижение в десятки раз,
а первые результаты появляются уже в течение первых 7 дней.
Зарегистрироваться и Начать продвижение
- - + = 0 или 

Рисунок 2
б) Рассмотрим в равновесии ступенчатый цилиндр. Составим уравнение равновесия сил относительно оси О
(4)

Рисунок 3
Откуда
Н
|