Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Введение в стереометрию

Название: Введение в стереометрию
Раздел: Рефераты по математике
Тип: реферат Добавлен 03:13:49 30 июня 2011 Похожие работы
Просмотров: 223 Комментариев: 18 Оценило: 4 человек Средний балл: 4 Оценка: неизвестно     Скачать

Реферат на тему:

«Введение в стереометрию»

I .Основные аксиомы стереометрии

В стереометрии к основным понятиям планиметрии добавляется еще одно - плоскость, а вместе с ним - аксиомы, регулирующие «взаимоотношения» плоскостей с другими объектами геометрии. Таких аксиом три.

Первая- аксиома выхода в пространство - придает «театру геометрических действий» новое, третье измерение:

· Имеется четыре точки, не лежащие в одной плоскости (рис. 1)

Рис. 1
Таким образом, не все точки находятся в одной плоскости. Но этого недостаточно. Нужно, чтобы различных плоскостей было бесконечно много. Это обеспечивается второй аксиомой- аксиомой плоскости :

· Через любые три точки проходит плоскость.

С третьей аксиомой мы сталкиваемся, когда складываем фигурки из бумаги: все знают, что, образующиеся при этом линии сгиба - прямые.

Аксиома пересечения плоскостей звучит так:


·

Рис. 2
Если две плоскости имеют общую точку, то их пересечение есть прямая.

· (рис.2)

Отсюда следует: если три точки лежат на одной прямой, то проходящая через них плоскость единственная.

Действительно, если через какие- то три точки проходят две разные плоскости, то через эти точки можно провести прямую, а именно прямую, по которой плоскости пересекаются. Отметим, что последнее свойство само нередко включается в аксиомы.

Третья аксиома играет очень существенную и неочевидную с первого взгляда роль в стереометрии: она делает пространство в точности трехмерным, потому что в пространствах размерности четыре и выше плоскости могут пересекаться по одной точке. К трем указанным так же присоединяются планометрические аксиомы, переосмысленные и подправленные с учетом того, что теперь мы имеем дело не с одной, а с несколькими плоскостями. Например, аксиому прямой - через две различные точки можно провести одну и только одну прямую - переносят в стереометрию дословно, но только она уже распространяется на две точки пространства.

В качестве следствия выведем прямо из аксиом одно полезное следствие: прямая, имеющая с плоскостью хотя бы две общие точки, целиком лежит в этой плоскости.

β
α
Рис. 3
B
A
.
.
.C
l
Пусть прямая l проходит через точки А и В плоскости α (рис. 3). Вне плоскости α есть хотя бы одна точка С (по аксиоме выхода в пространство). В соответствии с аксиомой плоскости через А ,В и С можно провести плоскостьβ . Она отлична от плоскости α , так как содержит С и имеет с α две общие точки. Значит,β пересекается сα по прямой, которой, как и l , принадлежат А , В . По аксиоме прямой, линия пересечения плоскостей совпадает с l . Но эта линия лежит в плоскости α , что и требовалось доказать.

Путем несложных доказательств мы находим, что:

· На каждой плоскости выполняются все утвержде-ния планиметрии.


II . Прямые, плоскости, параллельность.

Уже такое основное понятие, как параллель­ность прямых, нуждается в новом определении:

две прямые в пространстве называются парал-лельнылт, если они лежат в одной плоскости и не имеют общих точек. Так что не попадай­тесь в одну из излюбленных экзаменаторами ловушек — не пытайтесь «доказывать», что через две параллельные прямые можно про­вести плоскость: это верно по определению параллельности прямых! Знаменитую плани­метрическую аксиому о единственности парал­лельной включают и в аксиомы стереометрии, а с её помощью доказывают главное свойство параллельных прямых в пространстве:

· Через точку, не лежащую на прямой, можно провести одну и только одну прямую параллельно данной.

Сохраняется и другое важное свойство па­раллельных прямых, называемое транзитив­ностью параллельности:

· Если две прямые а и b параллельны третьей прямой с, то они параллель­ны друг другу.

Но доказать это свойство в стереометрии сложнее. На плоскости непараллельные прямые обязаны пересекаться и потому не могут быть одновременно параллельны третьей (иначе нарушается аксиома параллельных). В про­странстве существуют непараллельные и при­том непересекающиеся прямые — если они лежат в разных плоскостях. О таких прямых говорят, что они скрещиваются.

D
А
На рис. 4 изображён куб; прямые АВ и ВС пересекаются, АВ и CD — параллельны, а АВ и В¹С¹ — скрещиваются. В дальнейшем мы часто будем прибегать к помощи куба, чтобы иллюс­трировать понятия и факты стереометрии. Наш куб склеен из шести граней-квадратов. Исходя из этого, мы будем выводить и другие его свойства. Например, можно утверждать, что прямая АВ параллельна C¹D¹, потому что обе они параллельны общей стороне CD со­держащих их квадратов.
С
В
Рис. 4
В стереометрии отношение параллельности рассматривается и для плоскостей: две пло­скости или прямая и плоскость параллельны, если они не имеют общих точек. Прямую и плоскость удобно считать параллельными и в том случае, когда лежит в плоскости. Для плоскостей и прямых справедливы теоремы о транзитивности:

· Если две плоскости параллельны третьей плоскости, то они параллельны между собой.

· Если прямая и плоскость параллельны некоторой прямой( или плоскости), то они параллельны друг другу.

Наиболее важный частный случай второй теоремы- признак параллельности прямой и плоскости:

· Прямая параллельна плоскости, если она параллельна некоторой прямой в этой плоскости.

А вот признак параллельности плоскостей:

· Если две пересекающиеся прямые в одной плоскости соответственно параллельны двум пересекающимся прямым в другой плоскости, то и плоскости параллельны.

Часто используется и такая простая теорема:

· Прямые, по которым две параллельные плоскости пересекаются третьей, параллельны друг другу.

Посмотрим еще раз на куб (рис. 4). Из признака параллельности прямой и плоскости следует, например, что прямая А¹В¹ параллельна плоскости АВСD (так как она параллельна прямой АВ в этой плоскости), а противоположные грани куба, в частности А¹В¹С¹D¹ и ABCD, параллельны по признаку параллельности плоскостей: прямые A¹B¹ и B¹С¹ в одной грани соответственно параллельны прямым АВ и ВС в другой. И чуть менее простой пример. Плоскость, содержащая параллельные прямые AA¹ и СС¹, пересекают параллельные плоскости АВСD и A¹B¹C¹D¹ по прямым АС и А¹С¹, значит, эти прямые параллельны: аналогично, параллельные прямые В¹С и А¹D. Следовательно, параллельные плоскости АВ¹С и А¹DC, пересекающие куб по треугольникам.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита22:01:53 04 ноября 2021
.
.22:01:51 04 ноября 2021
.
.22:01:50 04 ноября 2021
.
.22:01:48 04 ноября 2021
.
.22:01:46 04 ноября 2021

Смотреть все комментарии (18)
Работы, похожие на Реферат: Введение в стереометрию

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(294399)
Комментарии (4230)
Copyright © 2005 - 2024 BestReferat.ru / реклама на сайте