Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Эволюция и химический состав вселенной

Название: Эволюция и химический состав вселенной
Раздел: Рефераты по биологии
Тип: реферат Добавлен 11:56:53 07 июля 2011 Похожие работы
Просмотров: 319 Комментариев: 18 Оценило: 4 человек Средний балл: 5 Оценка: неизвестно     Скачать

1. Эволюция и химический состав вселенной

1.1 Теория Большого Взрыва

Около 15 миллиардов лет тому назад произошел Большой Взрыв, охвативший существовавшее в то время вещество, которое было равномерно распределено в небольшом пространстве и имело огромные плотность и температуру. Наиболее плотно вещество упаковано в атомных ядрах. Там плотность его составляет 10–15 г/см3. Сейчас известно, что плотность вещества до Большого Взрыва была во всяком случае больше плотности вещества в атомных ядрах по крайней мере в 10108раз. Именно такой плотности достигло вещество спустя 10–43 секунды после Большого Взрыва. Но за это время после начала Взрыва вещество успело уменьшить свою плотность. Значит, до Взрыва оно имело большую плотность.

Горячее вещество, которое в конце концов взорвалось, состояло из большого количества фотонов, имеющих большие энергии, но замурованных в вещество в результате столь огромной его плотности. Кроме того, в нем содержались протоны и нейтроны, которые непрерывно стремились к объединению и образованию дейтерия. Этому препятствовали фотоны, разбивая дейтерий на протон и нейтрон. Этот процесс может идти только при очень высокой температуре.

Известно, что температура вещества до Взрыва и сразу после него превышала десятки тысяч миллиардов градусов по Кельвину (или просто кельвинов). Взрыв разбросал вещество во все стороны, оно стало разбегаться с огромными скоростями, порядка 250 километров в секунду. Так с момента Большого Взрыва начала существовать горячая расширяющаяся Вселенная, в которой мы живем. Горячее вещество до Взрыва не содержало атомов химических элементов и даже всех элементарных частиц. В экстремальных условиях при столь больших плотности и температуре после Большого Взрыва стали протекать ядерные реакции между элементарными частицами, в результате которых образовались другие элементарные частицы (до указанного выше момента после истечения 10–4 секунды после Взрыва), а затем и химические элементы.

Какие именно процессы привели к образованию химических элементов, в настоящее время установлено, поскольку имеется возможность сопоставить результаты расчетов этих процессов с истинным распределением химических элементов в нынешней Вселенной. Поэтому можно считать, что мы знаем, что происходило от 1 секунды после Взрыва и до наших дней, несмотря на то, что этот период занимает 15 миллиардов лет. Имеются некоторые естественные вехи, которые делят весь интервал времени после Взрыва (все время жизни Вселенной, поскольку ее летоисчисление началось с Большого Взрыва) на отдельные периоды. Первый такой период (возможно, состоящий из подпериодов) от начала Взрыва продолжался всего 1 секунду. Но именно в этот период была определена вся дальнейшая «судьба» Вселенной (ее строение, химический состав, эволюция). Правда, этот период не только самый важный, но и менее изученный, чем последующие.

В самые первые моменты после Взрыва из-за огромной температуры, превышающей десятки тысяч миллиардов градусов, взаимодействие частиц приводило к рождению одновременно протонов и антипротонов, а также нейтронов и антинейтронов. Частицы и античастицы не только рождались, но и аннигилировали (взаимно уничтожались). При последнем процессе рождаются фотоны. Так, высокоэнергичные фотоны при столкновении приводят к образованию пар электрон-позитрон, а при аннигиляции рождаются кванты света — фотоны. Минимальная температура, при которой могут проходить описанные выше превращения, должна превышать 10 миллиардов градусов. При меньших температурах фотонам не будет хватать энергии для образования пар электрон-позитрон. Как уже было сказано, для рождения более тяжелых частиц (протонов, антипротонов, нейтронов, антинейтронов, мезонов и т. п.) нужна еще более высокая температура. Чем меньше температура, тем частицы меньшей массы могут порождать фотоны. Поэтому при понижении температуры число тяжелых частиц уменьшается (вначале протонов и антипротонов, а затем и мезонов).

Высокоэнергичные фотоны не могли преодолеть вещества из-за его колоссальной плотности: они поглощались и тут же излучались веществом. При нынешней низкой плотности вещества во Вселенной оно неспособно было бы оказать какое-либо ослабляющее (поглощающее) действие на распространение этих фотонов. В результате поглощения и излучения фотонов их число оставалось неизменным. То же можно сказать и о протонах и нейтронах. Установлено, что в первый период на один протон приходился миллиард фотонов. Можно сказать, что все произошло от света, так как частиц по сравнению с фотонами было ничтожно мало. С течением времени это соотношение остается постоянным. Но меняется соотношение между массой всех фотонов и массой всех протонов, поскольку фотоны становятся все более легкими. Это происходит в результате эффекта Доплера, так как фотоны с течением времени уменьшают свою частоту, а значит, и энергию (массу).

В какое-то время наступает момент, когда вся масса фотонов (в данном объеме) сравнится с массой протонов. Такое условие наступило во Вселенной тогда, когда ее вещество имело плотность 10–20 г/см3 и температуру около 6 тысяч градусов. До этого масса излучения была больше массы вещества. Этот период называют эрой фотонной плазмы. Фотоны в это время представляли собой видимый свет. Позднее их энергия уменьшилась (частота уменьшилась), и они стали радиоволнами.

В первом периоде критическим является достижение момента в 0,3 секунды. С этого момента вещество, уменьшающее свою плотность в результате расширения, начинает быть прозрачным для нейтрино. При больших плотностях и очень высоких температурах нейтрино взаимодействует с веществом: они вместе с антинейтрино превращаются в электроны, позитроны и обратно. После этого момента, наступившего спустя 0,3 секунды после Большого Взрыва, нейтрино становятся неуловимыми, ведь они больше не взаимодействуют с остальным веществом, которое становится для нейтрино прозрачным. По этой причине число нейтрино, которые вырвались в этот момент из вещества Вселенной, не меняется до наших дней: они только носятся по Вселенной, но не исчезают. Правда, с ними происходит то же самое, что и с фотонами, в результате эффекта Доплера они с течением времени уменьшают свою энергию. Мы узнаем о том, что происходило после Большого Взрыва, по тому излучению, которое доходит до нас с тех времен. Несомненно, что ценную информацию несут с собой и нейтрино, которые вырвались на свободу в момент, наступивший через 0,3 секунды после Взрыва. Но, к сожалению, их пока не удалось поймать. Этому препятствуют очень малая их энергия (она с первоначального момента сильно уменьшилась) и их нежелание взаимодействовать с остальным веществом.

В первые пять минут после Большого Взрыва практически произошли события, определившие те свойства Вселенной, которые она имеет сегодня. Решающую роль в них играли протоны и нейтроны, которые, взаимодействуя с электронами, позитронами, нейтрино и антинейтрино, превращаются друг в друга. Но в каждый момент число протонов примерно равно числу нейтронов. Подчеркнем, что температура в это время была не менее ста миллиардов градусов. Но с течением времени температура вследствие расширения Вселенной уменьшается. При этом протонов становится больше, поскольку их масса меньше массы нейтронов и создавать их энергетически выгоднее. Но эти реакции создания избытка протонов останавливаются из-за понижения температуры до того, как все нейтроны будут превращены в протоны, а именно, в тот момент, когда нейтроны составляют 15 % от всех тяжелых частиц. И только после того, как температура падает до одного миллиарда градусов, начинают образовываться простейшие ядра (кроме самого протона, который является ядром атома водорода). Это становится возможным потому, что фотоны и другие частицы из-за «низкой» температуры уже бессильны разбить ядро. Нейтроны захватываются протонами, и образуется дейтерий. Затем реакция продолжается и заканчивается образованием ядер гелия, которые состоят из двух протонов и двух нейтронов. Кроме дейтерия образуется совсем немного лития и изотопа гелия-3. Более тяжелые ядра в это время не образуются. Второй период, длящийся от секунды до 5 минут, заканчивается потому, что из-за упавшей ниже одного миллиарда градусов температуры ядерные реакции прекращаются. Собственно, это те реакции, которые происходят при взрыве водородной бомбы.

К концу второго периода, то есть через 5 минут после Большого Взрыва, расширяющееся вещество состоит из ядер атома водорода — 70 % и ядер гелия — 30 %.

Название эпохи

Физические процессы

Время, прошедшее с момента Большого Взрыва

Температура

Рождение классического пространства-времени


Вселенная рождается из состояния сингулярности, из пространственно-временной «пены»

5∙10–44 c

1032 К

Первичный нуклеосинтез

Образуются протоны и нейтроны. Возникновение ядер водорода и гелия, а также лития и бериллия

1–200 с

109 –1010 К

Стадия рекомбинации водорода

Вещество становится прозрачным. Образование реликтового излучения

1 с – 1 000 000 лет

4500–3000 К

Возникновение галактик

Начало возникновения звезд и галактик

1 млрд. лет

30 К

Появление тяжелых элементов

Образование тяжелых ядер при взрывах звезд

3 млрд. лет

10 К

Современная эпоха

Существование галактик, звезд, планетных систем. Расширение Вселенной продолжается

15–20 млрд. лет

2,725 К

1.2 Эволюция Вселенной. Процесс образования вещества

Был еще один момент, особый в протекании физических процессов в расширяющейся Вселенной после Большого Взрыва. Электроны и позитроны, рождаемые при высоких температурах в результате столкновения высокоэнергичных частиц, перестали создаваться, так как температура упала до нескольких миллиардов градусов. Энергии сталкивающихся частиц стало недостаточно для их образования. Имеющиеся электроны и позитроны аннигилируют, и при этом образуются фотоны. Таким образом, число фотонов увеличивается. Через какое-то время процесс аннигиляции заканчивается. Так, к концу второго периода в 5 минут заканчиваются процессы в горячей ранней Вселенной. Температура становится ниже одного миллиарда градусов. Вселенная перестает быть горячей. Поэтому наступает период совсем других процессов, который длится триста тысяч лет.

В это время еще нет атомов. Вещество Вселенной представляет собой плазму, то есть одни голые ядра без орбитальных электронов. Эта плазма «нашпигована» фотонами. Поэтому ее называют фотонной плазмой. Она является непрозрачной для фотонов. Свет своим давлением только несколько ее раскачивает, образуя «фотонный звук». Главным дирижером всего происходящего в расширяющейся Вселенной во все три периода является температура. Вселенная не только расширяется, но и одновременно (а точнее, поэтому) охлаждается. Когда температура падает до четырех тысяч градусов, наступает очередной скачок в характере процессов: начинают образовываться нейтральные атомы. Плазма перестает быть полностью ионизованной. Число нейтральных атомов увеличивается. Они образуются в результате обрастания имеющихся в плазме ядер водорода и гелия электронами. Так появляются в расширяющейся Вселенной нейтральный водород и гелий. По мере того как плазма стала превращаться в нейтральный газ, она становилась прозрачной для фотонов. Именно в этот момент, спустя триста тысяч лет после Большого Взрыва, фотоны вырвались из столь длительного плена (названного эрой фотонной плазмы) и устремились в самые удаленные уголки Вселенной. Эти качественные изменения имели далеко идущие последствия. Главное из них, видимо, то, что однородная до этого плазма, превращенная теперь в нейтральный газ, получила возможность собираться в комки. А это первый шаг к образованию галактик и вообще всех небесных тел. Почему это не могло происходить в плазме? Потому, что образованный комок плазмы запирал внутри себя фотоны, которые оказывали на него изнутри огромное давление и разбивали его. Комок не рос дальше, а, наоборот, разрушался. Плазма снова становилась однородной. Но когда фотоны, как пар из лопнувшего шара, были выпущены, ничто не препятствовало нейтральному веществу собираться в комки.

Прежде всего, возникает естественный вопрос, откуда мы знаем, что Вселенная расширяется. Это отнюдь не очевидно. Наоборот, во все эпохи считалось, что Вселенная является стационарной, то есть один раз запущенной, как часы, и важно было только выяснить, как устроен механизм этих часов. Но оказалось, что механизм Вселенной меняется со временем. Вселенная развивается, эволюционирует, то есть является нестационарной. Первым, кому это пришло в голову, был советский физик А. Фридман, работавший в 1920-е годы в Петрограде. Он строго математически решал уравнения теории тяготения А. Эйнштейна и установил, что Вселенная не может быть стационарной, она должна непрерывно меняться, эволюционировать. Если принять ее стационарность, то под действием сил притяжения она должна постепенно сжиматься. Сжатию под действием сил тяготения могут препятствовать силы, возникающие за счет круговых движений тел по своим орбитам, как это имеет место в Солнечной системе. В эллиптических галактиках вступает в силу другое противодействие — движение тел по очень вытянутым орбитам. Что касается всей Вселенной, то ни то, ни другое объяснение невозможно, так как для уравновешивания действия сил тяготения пришлось бы разгонять ее до скоростей, превышающих скорость света. А это законами физики запрещено. Получается, что силы тяготения во Вселенной уравновесить нечем.

А. Эйнштейн также занимался этой проблемой и нашел выход в том, что модифицировал уравнения теории тяготения, таким образом, что силы притяжения уравновешивались некими введенными им силами отталкивания, которые должны, по его предположению, действовать между всеми телами во Вселенной (наряду с силами притяжения). Так он несколько незаконно получил статистические решения, описывающие стационарную Вселенную. На опубликованную в конце июня 1922 года в немецком «Физическом журнале» работу Фридмана он опубликовал там же ответ, в котором указал, что он нашел в расчетах А. Фридмана ошибку, а правильные решения дают стационарную Вселенную. Только почти через год (в мае 1923 года)

А. Эйнштейна удалось убедить в правоте А. Фридмана, и он публично признал это.

В процессе образования вещества во Вселенной большая роль отводится нейтрино. На первом этапе (в первые секунды после Взрыва) нейтрино выравнивает случайно возникающие неоднородности плотности вещества во Вселенной. Это было возможно потому, что нейтрино имели большие энергии (скорости, близкие к скорости света). Но выравнивание плотности вещества происходит только в малых пространственных масштабах (по космическим понятиям). Однако с течением времени из-за расширения Вселенной нейтрино теряют свою энергию. Примерно спустя 300 световых лет после начала расширения нейтрино, попадающие в сгущение плотности (комок), уже неспособны из него выбраться, у них не хватает для этого энергии. Больше они не препятствуют образованию неоднородностей вещества Вселенной.

2. Эволюция звёзд

2.1 Формирование звезд из газа

Одна из гипотез предполагает, что звезды образуются из газового вещества, того газового вещества, которое и сейчас наблюдается в Галактике. Начиная с момента, когда масса и плотность газового вещества достигают определенного, критического значения, газовое вещество под действием своего собственного притяжения начинает сжиматься и уплотняться. При этом вначале образуется холодный газовый шар. Но сжатие продолжается, и температура газового шара растет. Потенциальная энергия частиц в поле притяжения газового шара при приближении к центру становится меньше. Часть потенциальной энергии переходит в тепловую энергию.

Тогда же газовый шар нагреется, он станет отдавать тепловую энергию через излучение с поверхностных слоев. Поэтому он будет охлаждаться вначале в поверхностном слое, а затем и в более глубоких слоях. Если бы в этом газовом шаре (звезде) не появились новые источники энергии, то процесс сжатия довольно быстро привел бы к исчезновению энергии и угасанию звезды. Всю энергию унесло бы излучение. Но на самом деле процесс этот более сложный. В результате сжатия центральные области звезды разогреваются до очень высоких температур. Они расположены очень глубоко и поэтому почти не испытывают влияния охлаждения, которое вызывается излучением с поверхностных слоев. Когда же температура центральной области достигает нескольких миллионов градусов, в ней начинают протекать термоядерные реакции. Они сопровождаются выделением большого количества энергии.

Таким образом, первый период образования звезды — это период сжатия. Он длится до того момента, пока в центральной области звезды не начнут протекать термоядерные реакции. В продолжение периода сжатия температура звезды повышается. Поэтому спектральный класс звезды становится более ранним. Что же касается светимости звезды, то в период сжатия ее увеличению будут способствовать увеличение температуры поверхности, а также увеличение прозрачности разогревшегося вещества. Поэтому из звезды будет непосредственно выходить излучение более глубоких и горячих слоев. Но работает и обратный механизм. Уменьшение радиуса звезды будет уменьшать светимость. Специалисты оценили совокупное действие всех механизмов и пришли к заключению, что в период сжатия звезды все же происходит небольшое увеличение светимости звезды. Именно поэтому на диаграмме спектр — светимость эволюция в период сжатия протекает вдоль линий, которые проходят справа налево и немного поднимаются вверх. Это показано на рисунке 17. Различие линий эволюции на диаграмме определяется различием масс газовых облаков, из которых образовались звезды. Чем больше масса, тем больше светимость, тем выше на диаграмме проходит линия эволюции.

Когда период сжатия подходит к концу и внутри звезды начинают протекать температурные реакции, все звезды оказываются на главной последовательности диаграммы спектр — светимость. В термоядерной реакции водород превращается в гелий. При этом четыре протона (четыре ядра атома водорода) образуют ядро атома гелия. Получившийся излишек массы превращается в энергию: примерно 0,007 массы вещества при этой реакции превращается в энергию излучения.

Несложно подсчитать, через какое время наша звезда — Солнце израсходует на излучение всю свою массу. Расчеты дают величину 1011 лет. Это сто миллиардов лет.

Сжатие звезды прекращается потому, что от термоядерных реакций поступает энергия, которая противодействует сжатию. Она компенсирует расход энергии на излучение. Пока все будет происходить именно таким образом, звезда будет сохранять постоянными свои основные физические характеристики — радиус, температуру, светимость. Она будет оставаться на диаграмме спектр — светимость на линии главной последовательности. Но через какое-то время водород в центральной части звезды кончится. В результате радиус звезды должен увеличиться, а температура ее уменьшится. Светимость при этом несколько увеличится. Это значит, что звезда начнет смещаться с главной последовательности вправо и вверх. Скорость этого смещения зависит от скорости выгорания водорода, которая, в свою очередь, в очень сильной степени зависит от температуры. Скорость протекания термоядерных реакций приблизительно пропорциональна 15-й степени температуры! Поэтому те звезды, у которых в центральных областях достигается более высокая температура, быстрее сходят с главной последовательности и быстрее перемещаются на диаграмме вправо и вверх. С другой стороны, температура центральных областей выше у звезд с большими массами. В этих звездах сильное поле тяготения и больше потенциальная энергия тяготения. Именно эта энергия превращается при сжатии в тепловую энергию.

По указанным причинам звезды больших масс и больших светимостей сходят с главной последовательности вправо и вверх быстрее. При этом они перемещаются в направлении той части диаграммы, где расположена ветвь гигантов. На рисунке 1 показано, что звезды больших масс и, следовательно, больших светимостей эволюционируют быстрее, превращаясь в красных гигантов, когда звезды меньших масс еще только немного отошли от линии главной последовательности.

Рисунок 1. Эволюционные перемещения звезд на диаграмме спектр - светимость после исчерпания водорода в центральных областях

Наступает момент, когда весь водород в звезде-гиганте выгорел. При этом они достигнут стадии красного гиганта. Тогда сжатие их ядра, которое состоит из гелия, приведет к дальнейшему повышению температуры. Она увеличивается до значений более 100 миллионов градусов. Тогда начинается новая термоядерная реакция, в результате которой образуются ядра атома углерода из трех ядер атомов гелия. И эта реакция сопровождается потерей массы и выделением энергии излучения. В результате температура звезды увеличивается. Звезда начинает свое новое перемещение на диаграмме спектр — светимость.

2.2 Красные гиганты, белые карлики и туманности

Указанные три небесных объекта генетически связаны между собой, можно сказать, между ними имеются родственные связи. На определенной стадии своей эволюции огромный красный гигант (радиус его больше радиуса Солнца в 21 раз) сбрасывает с себя внешнюю часть вещества и вместо него остается только голое ядро красного гиганта радиусом всего около 10 километров, но со сверхплотным веществом внутри. Это белый карлик. Сброшенное красным гигантом вещество (газ) определенное время остается видимым и является не чем иным, как туманностью. На рисунке 8 показана туманность «Летящая». Эту связь красных гигантов, белых карликов и туманностей установил советский астрофизик И.С. Шкловский.

Красные гиганты и белые карлики отличаются от всех других обычных звезд тем, что в них не соблюдается известная связь между светимостью и поверхностной температурой. У красных гигантов поверхностная температура сравнительно невелика (всего 3500 К), тогда как светимость очень высокая. Если бы красные гиганты были обычными звездами, то они при их поверхностной температуре светились бы намного менее ярко. Эта особенность красных гигантов обусловлена их строением, тем, что они добывают энергию для своего свечения совсем другим путем, нежели обычные звезды.

Красный гигант — звезда старая, в которой водород весь выгорел в результате ядерных реакций и превратился в гелий. Дальнейшие реакции превращения гелия в более тяжелые химические элементы идти там не могут из-за недостаточной для этого температуры.

Ядро красного гиганта очень небольшое: его радиус составляет всего около одной тысячной радиуса самой звезды. Следует сказать, что по мере эволюции звезды масса и размеры ее конвективного ядра постепенно уменьшаются. Но в ядре плотность вещества огромная (около 300 килограммов в кубическом сантиметре). Температура вещества ядра звезды составляет сорок миллионов кельвинов. И тем не менее ядро красного гиганта не является термоядерной печью, которая снабжает энергией всю звезду. В нем до этого успело выгореть все горючее. Поскольку в ядре нет бурных процессов, связанных с термоядерными реакциями, температура во всех его частях одинакова, то есть оно является изотермичным.

Энергия красного гиганта вырабатывается в весьма тонкой оболочке (толщина ее намного меньше толщины ядра звезды), которая окружает ядро. В этом слое температура вещества звезды уменьшается от 40 миллионов кельвинов в ядре до 25 миллионов кельвинов снаружи слоя. Плотность вещества в этой оболочке в несколько тысяч раз меньше, чем в ядре звезды. Энергия в этом слое выделяется в результате происходящих там температурных реакций углеродно-азотного цикла. Характерным для этих реакций является то, что углерод в них не расходуется, хотя и участвует в реакциях. Он является катализатором. Цикл реакций начинается взаимодействием углерода с ядром водорода — протоном, а заканчивается (в шестой реакции) образованием того же ядра углерода, но вместе с ядром гелия (то есть альфа-частицей). «Сухой остаток» этих реакций — превращение довольно сложным путем водорода в гелий и выделение при этом соответствующей энергии.

Выделяющаяся энергия передается от оболочки, где происходят термоядерные реакции, наружу путем лучеиспускания. Но таким путем она может пробиться только на расстояние около одной десятой радиуса звезды. Дальше лучистый перенос энергии становится неэффективным из-за большой непрозрачности вещества звезды. Поэтому дальнейший перенос энергии наружу происходит путем конвекции вещества. У Солнца, например, конвективная зона занимает относительно небольшой по толщине слой, тогда как у красного гиганта большая часть «тела» звезды находится в состоянии конвекции.

Описанное строение красного гиганта очень оптимально в смысле долговечности звезды. То, что звезда имеет очень плотное ядро, позволяет ей очень продолжительное время удерживать остальное вещество звезды, находящееся выше. Столь плотное ядро практически не сжимается, поэтому оно не нагревается. В течение длительного времени в ядре звезды не наступает термоядерная реакция превращения гелия в углерод. Эта реакция идет при температурах порядка сотен миллионов кельвинов. Она идет в несколько этапов. Вначале сталкивающиеся ядра гелия будут образовывать радиоактивный изотоп бериллия, который при столкновении с еще одной альфа-частицей с высокой энергией образует устойчивый изотоп углерода. При этом выделяется очень большая энергия: 7,3 миллиона электрон-вольт.

Когда температура ядра красного гиганта по каким-то причинам увеличится до необходимой величины — сотен миллионов кельвинов, начнется превращение гелия в углерод, при котором выделяется огромное количество энергии. Это так называемая гелиевая вспышка звезды. Когда в ядре выгорит весь гелий, реакция продолжается только в относительно тонком слое, который окружает выгоревшее во второй раз ядро. Напомним, что ядро окружено и другой оболочкой большего радиуса, в которой идут термоядерные реакции углеродно-азотного цикла, причем водород продолжает превращаться в гелий. Было установлено, что масса гелиевого ядра красного гиганта перед началом гелиевой вспышки практически не зависит от полной массы звезды и составляет около половины массы Солнца.

После гелиевой вспышки (точнее, после выгорания гелия в самом ядре) красный гигант становится звездой с «двухслойным» источником ядерной энергии. Оба слоя описаны выше. С увеличением выделения энергии внутри звезды увеличивается и ее светимость. Светимость красного гиганта достигает нескольких тысяч светимостей Солнца (вместо 225 раз до гелиевой вспышки). В результате всего этого звезда «раздувается», а радиус ее катастрофически растет. Если вначале он был равен 21 радиусу Солнца, то сейчас размеры красного гиганта едва вместились бы внутри орбиты Земли.

Водородная оболочка постепенно смещается наружу. Со временем внутри нее (в ядре) сосредоточено уже 70 % всей массы звезды. Красный гигант с двумя слоями энерговыделения может еще продержаться около миллиона лет. После затухания ядерных реакций наружная оболочка звезды отторгается от ядра и превращается в туманность. В веществе образовавшейся планетарной туманности много водорода. Планетарная туманность расширяется со скоростью около 30 км/с. На основании этого факта можно подсчитать, что отрыв наружных слоев звезды произошел на расстоянии от ядра около одной астрономической единицы (когда звезда сравнялась в размерах с орбитой Земли). В этих расчетах принималось, что масса внутренней части звезды равна 0,8 массы Солнца.

Почему и как происходит сброс наружных слоев красных гигантов? Полной теории этого явления в настоящее время еще нет. Вопрос очень непростой. Но ясны причины, которые могли бы вызвать этот сброс. Одна из них — очень высокое световое давление, создаваемое излучением ядра звезды. Отрыв оболочки может произойти и в результате неустойчивостей ее вещества. Поскольку размеры оболочки огромны, то такая неустойчивость должна вызвать колебательные процессы, что, в свою очередь, должно привести к изменению теплового режима вещества оболочки. Отрыв оболочки звезды от ядра мог бы произойти и в результате сильной конвективной неустойчивости. Она могла развиться как результат ионизации водорода под фотосферой звезды. Так или иначе отрыв оболочки от ядра происходит, и образуется планетарная туманность. Но красные гиганты поставляют в межзвездную среду не только туманности, но и пылевые частицы — космическую пыль. Пылинки образуются в холодных протяженных атмосферах красных гигантов. Здесь для этого имеются условия, поскольку значительная часть газа находится в молекулярном состоянии. Это подтверждается измерениями инфракрасного излучения от планетарных туманностей. Результаты этих измерений показывают, что имеется значительный избыток этого излучения, исходящего от пылевых частиц. Из газовой среды пылинки образоваться не могут, поскольку газ является горячим и хорошо перемешанным.

Теперь нам предстоит рассмотреть ядро красного гиганта, которое после отрыва оболочки превратилось в своеобразную звезду — белого карлика.

Ядро красного гиганта состоит из вещества в особом состоянии, которое обусловлено экстремальными условиями в ядре. Газ в таком состоянии называется «вырожденным». Он является порождением квантово-механических процессов в веществе, и, к сожалению, сущность его принципиально нельзя понять (и объяснить) на основании только классической физики.

Что же представляет собой вырожденный газ? В ядре красного гиганта находится ионизованный газ большой плотности. Именно из-за того, что эта плотность очень большая, орбитальные электроны в атомах газа движутся не так, как в атомах при обычном давлении. Движение орбитальных электронов регулируется (определяется) набором квантовых чисел. Таких чисел 4. Одно (главное) определяет энергию электрона в атоме, второе фиксирует значение орбитального вращательного момента электрона, третье — проекцию этого момента на направление магнитного поля, четвертое определяет величину собственного вращательного момента, его спин. Это можно сравнить с номерами на автомашине, состоящими из 4 цифр. Имеется железное правило: не может быть двух квантово-механических систем с точно одинаковыми квантовыми числами (как не может быть двух машин с точно одинаковыми номерами). Это можно пояснить и по-другому. Первые три цифры (квантовые числа) однозначно задают траекторию частицы. Ведь элементарная частица может двигаться только по определенным траекториям, а не по любым. Это относится не только к электронам в атоме, которые движутся по своим орбитам, но и к электронам в куске металла, которые давно потеряли свои родные атомы и движутся, входя в сообщество (ансамбль) себе подобных. Для этих электронов в металле квантовый закон (принцип Паули) определяет четкие траектории. При обычных условиях, то есть при обычном давлении, когда частиц не больше, чем отведенных для них траекторий, ничего особенного не происходит: каждый электрон движется по отведенной ему траектории. Но мы знаем, что частицы газа могут двигаться быстрее или медленнее, в зависимости от температуры газа и объема, который он занимает. Известно также, что если увеличить температуру газа, то скорости движения его частиц увеличатся. Как связаны давление газа, его температура и объем, определяется хорошо известными газовыми законами или, как их называют, законами идеального газа. Но при слишком высокой плотности вещества, когда элементарных частиц (электронов) становится больше, чем для них отведено траекторий, газ перестает подчиняться этим законам. Это очень серьезно, так как газ перестает вести себя так, как он должен себя вести, и его поведение выходит за рамки всякого смысла. Надо добавить слово «здравого». Но известно, что квантовая механика и была создана вопреки здравому смыслу. Тем не менее ее законам подчиняется движение элементарных частиц, в том числе и в таких экстремальных условиях. Так вот, когда электронов больше, чем отведенных для них дорожек, принцип Паули разрешает им вставать на одну дорожку не по одному, а по четыре. При обычном давлении на одной траектории, которая задается полностью тремя квантовыми числами, находятся два электрона, но они отличаются своими четвертыми квантовыми числами. Грубо говоря, по одной дорожке бегут два электрона: один электрон вращается при этом влево, а другой — вправо. Говорят, что их спины разные, противоположные (английское слово «спин» означает «вращение»). Именно четвертое квантовое число частицы и определяет ее спин. Так вот, при очень высоком давлении из-за дефицита дорожек разрешается занимать одну и ту же дорожку не только двум электронам, которые имеют противоположное вращение вокруг своей оси, но еще двум электронам дополнительно, но с одним категорически строгим требованием: они должны бежать быстрее первых двух с тем, чтобы им не мешать. Насколько им надо бежать быстрее, электроны определяют сами, то есть они бегут быстрее «по необходимости». Но, подчиняясь этому требованию, электроны тем самым не имеют возможности подчиняться газовым законам. Так, в обычном газе скорость частиц становится очень маленькой, когда уменьшается температура газа. При этом уменьшается и давление газа. Совсем другое дело, когда уменьшается температура этого сверхплотного газа (его называют вырожденным). Так как частицам не разрешается уменьшать свои скорости с понижением температуры газа, то не уменьшается и давление газа. Ведь давление газа на определенную стенку создается ударами частиц об эту стенку. Раз скорости большие, то и удары сильные. В результате высокое давление. И это при низкой температуре. Это в корне противоречит газовым законам. Но не противоречит наблюдениям. Так, ядра красных гигантов состоят из вырожденного газа. Естественно, что когда они превращаются в самостоятельные звезды — белые карлики, они по-прежнему состоят из вырожденного газа. Поэтому поведение белых карликов длительное время ставило специалистов в тупик. Не удавалось с помощью газовых законов объяснить условия внутри белого карлика.

Белые карлики имеют массу, приблизительно равную массе Солнца, а размеры, равные размерам Земли. Отсюда ясно, насколько вещество уплотнено! В кубическом сантиметре упаковано до десятка тонн вещества. Но при таких условиях температура звезды должна быть огромной, а значит, она должна и сильно светить. А карлики светят в сотни и тысячи раз слабее, чем Солнце. В этом и был парадокс, пока не поняли, что причиной этому является вырожденное состояние газа, из которого состоит белый карлик. Белый карлик живет по законам вырожденного газа, и никакого парадокса, оказывается, нет.

Равновесное состояние обычных звезд (когда они не сжимаются и не расширяются) определяется температурой вещества звезды. В случае белых карликов температура в этом плане вышла из игры, она не влияет на равновесное состояние звезды, поскольку из повиновения ей вышли частицы, создающие давление. А равновесие обеспечивается определенным давлением. По законам вырожденного газа (в соответствии с принципом Паули) давление его определяется только плотностью газа. Соотношение между плотностью вырожденного газа и его давлением и заменяет уравнение Клапейрона, которому подчиняются идеальные газы. Причем давление, которое теперь никак не зависит от температуры, зависит от плотности не как первая степень последней, а намного сильнее: давление пропорционально плотности в степени 5/3. Это отражает тот факт, что давление (а значит, и скорость частиц) с добавлением новых частиц (то есть увеличением плотности) должно расти так, чтобы частицы увеличивали свою скорость настолько («по необходимости»), чтобы по их траекториям могли еще побежать и новые частицы, которые уже являются «избыточными». Именно наличие избыточных частиц в газе и делает его вырожденным. Раз известен закон поведения вырожденного газа, то можно вычислить, при какой плотности и температуре газ становится вырожденным. Такие подсчеты дают, что при температуре около 10 миллионов кельвинов, которая достигается в недрах звезд, газ должен становиться вырожденным, если его плотность превышает 1 килограмм в кубическом сантиметре. Как известно, в недрах обычных звезд плотность газа меньше, поэтому он является невырожденным и вполне подчиняется обычным законам газового состояния. Белые карлики состоят из полностью вырожденного газа. Только снаружи у них имеется тонкая оболочка из «обычного» газа. Именно поэтому структура белых карликов не зависит от их светимости, как это имеет место у обычных звезд. Белый карлик может оставаться самим собой даже при абсолютном нуле, поскольку его светимость не зависит от массы. Но одной зависимости карлики подчиняются строго: размеры белых карликов с одинаковой массой также должны быть одинаковы. Для других звезд такая зависимость отнюдь не обязательна. Там все определяет температура.

Далее, чем больше масса белого карлика, тем меньше его радиус. Значит, при какой-то предельной массе карлик вообще может сжаться в точку? Согласно теоретическим исследованиям, в природе не может быть белых карликов с массой более чем 2,2 массы Солнца. Кстати, если все же массу белого карлика сильно увеличивать, то избыточных электронов в вырожденном газе становится все больше и больше. Чтобы не мешать друг другу при движении по одним и тем же дорожкам, они должны все больше и больше наращивать свои скорости, пока они не станут приближаться к скорости света. Но при этом вещество меняет свое качество. Новое его состояние называется «релятивистским вырождением». Оно описывается уже другим уравнением, в котором зависимость давления от плотности менее сильная (как степень 4/3). При строго определенной массе звезды давление вырожденного газа звезды будет точно уравновешиваться силой гравитации, и звезда застабилизируется. Если масса звезды больше этого значения, то сила гравитации превысит давление газа и белый карлик вынужден будет сжаться «в точку».

Если масса звезды меньше критической, то она расширится и ее размеры установятся в тех пределах, когда звезда стабилизируется, то есть сила гравитации в точности стабилизируется давлением газа.

Остается неясным, как это звезда может сжаться «в точку». Этот вопрос очень непростой, но в то же время захватывающе интересный. Скажем сразу, что превратиться в точку звезда не может. Чрезмерное ее сжатие приведет к преобразованию ее в «черную дыру».

2.3 Черные дыры

Черные дыры имеют много весьма экстравагантных свойств, которыми не обладают другие звезды, даже очень экзотические, вроде нейтронных. Прежде всего, они являются звездами-невидимками. Для того чтобы можно было увидеть предмет, надо, чтобы от него к нам поступил видимый свет. Если предмет невидим в видимом свете, то надо иметь возможность зарегистрировать другое излучение, которое исходит от него: инфракрасное, рентгеновское, радио и т. д. Так вот, очень плотные звезды, которые были названы черными дырами, не посылают в окружающее их пространство абсолютно никакого излучения, поэтому они невидимы ни в каких лучах. Для наблюдателя их просто нет. Само по себе это уже очень странно, поскольку объект, имеющий определенную массу и температуру, что-то должен излучать. Тем более что температура черных дыр может достигать миллиардов градусов. В чем дело?

Такую ситуацию предвидел еще знаменитый французский математик и астроном П. Лаплас. Он описал ее в своей книге «Изложение систем мира», которая вышла в свет в 1795 году. Он рассуждал так. Если для того, чтобы оторваться от данного космического объекта, тело должно иметь скорость (первую космическую скорость) не меньше строго определенной величины, которая определяется массой этого объекта, то при слишком большой его массе скорость тела должна превысить скорость света для того, чтобы оторваться от объекта. Цифры говорят о следующем. Первая космическая скорость на Земле равна 7,2 км/с, на Луне — 2,4, на поверхности Юпитера — 61 и на Солнце — 620 км/с. На нейтронной звезде она должна достигать половины скорости света (150 тысяч километров в секунду). Таким образом, если масса звезды еще больше, то первая космическая скорость может превысить скорость света. Эти рассуждения применимы одинаковым образом и к телам, и к фотонам, то есть свету. Если масса звезды такова, что первая космическая скорость для нее должна быть больше скорости света, то свет от этой звезды исходить не может, он не может оторваться от нее, поскольку его скорость меньше первой космической скорости и не может быть ей равна (скорость света не может быть больше скорости света). Лаплас рассчитал, какая это должна быть масса небесного объекта (звезды или планеты). Он писал в указанной книге: «Светящаяся звезда с плотностью, равной плотности Земли, и диаметром в 250 раз больше диаметра Солнца не дает ни одному световому лучу достичь нас из-за своего тяготения: поэтому возможно, что самые яркие небесные тела во Вселенной оказываются по этой причине невидимыми». Так что, казалось бы, объяснение первого и самого экзотического свойства черной дыры было найдено еще за полтора столетия до ее открытия. Но это и так, и не так. Если говорить строго, то ситуацию при столь больших силах гравитации надо описывать уравнениями не механики Ньютона, а теории тяготения Эйнштейна. Поэтому, строго говоря, расчеты Лапласа, основанные на космической механике, неверны, а лучше сказать, неточны. Но, тем не менее, массу и размеры звезды, которая должна сжиматься и превратиться в черную дыру, он указал правильно. Это случилось потому, что в данном случае в теории тяготения Эйнштейна справедлива та же формула, что и в теории Ньютона.

Все свойства черных дыр могут быть получены только из теории тяготения Эйнштейна, которая содержится в его общей теории относительности.

В начале нашего века, когда была создана Эйнштейном общая теория относительности, никто не был готов к ее восприятию, включая крупных ученых: слишком сильно на всех давил здравый смысл. Но прошедшие десятилетия сделали свое дело: теорию относительности изучают в средней школе, а в обыденном разговоре то и дело можно услышать: «Все в мире относительно».Так что же происходит при сильном сжатии звезды, если следовать теории относительности Эйнштейна?

При сжатии звезды (с сохранением ее массы) ее радиус уменьшается, а сила тяготения увеличивается. Это естественно. Когда радиус станет равным нулю, сила тяготения должна стать бесконечно большой. Это следует из теории тяготения Ньютона. По теории А. Эйнштейна сила притяжения становится бесконечно большой еще до того, как радиус уменьшится до нуля. То есть она нарастает с уменьшением радиуса быстрее, чем по теории Ньютона. Тот радиус, при достижении которого сила тяготения стремится к бесконечности, принято называть гравитационным радиусом. Подчеркнем еще раз, что по классическим представлениям он равен нулю. Чем меньше масса тела, тем меньше его гравитационный радиус. Например, для нашей Земли он равен 1 сантиметру, для Солнца он равен 3 километрам. Различия между классической теорией и теорией относительности проявляются тогда, когда истинный радиус звезды близок к гравитационному радиусу. Пока различие между ними большое, нет необходимости привлекать теорию тяготения А. Эйнштейна, а можно спокойно пользоваться классическими уравнениями Ньютона, как это и делал П. Лаплас.

Теория относительности А. Эйнштейна устанавливает взаимоотношения между силами гравитации, течением времени и геометрическими свойствами пространства. Из нее следует, что в сильном гравитационном поле время замедляется относительно тех мест, где силы гравитации малы. Так, вблизи Земли время течет на одну миллиардную часть медленнее, чем в далеком космосе. Ясно, почему мы этого не замечаем. Даже вблизи массивных звезд это замедление времени неощутимо. Оно сразу дает о себе знать, когда масса звезды очень велика, а радиус очень мал, то есть при приближении к гравитационному радиусу. Но с силами гравитации связано не только время, но и пространство. В соответствии с теорией относительности пространство искривляется в гравитационном поле. Чем больше это поле, тем сильнее искривление. Приводится даже такое наглядное сравнение. Идеальную плоскость в пространстве делают из тонкой резиновой нервущейся пленки. На нее опускают металлический шар (черную дыру) и под его весом пленка прогибается. Так иллюстрируют искривление пространства под действием гравитационного поля массивной черной дыры. Надо сказать, что как замедление времени, так и искривление пространства вблизи сильных полей гравитации были измерены. В теории относительности существовавшие до этого по отдельности понятия абсолютного времени и абсолютного пространства объединены в одно понятие «пространство — время», поскольку они взаимосвязаны через поле гравитации.

Значение гравитационного радиуса было рассчитано по уравнениям теории тяготения Эйнштейна спустя месяц после опубликования теории в 1915 году немецким астрономом и математиком К. Шварцшильдом. С тех пор этот радиус носит его имя. Шварц-шильд получил решения уравнений Ньютона для сферического невращающегося тела и основные свойства черной дыры, хотя в то время ни он, ни А. Эйнштейн, которому он передал работу, еще не подозревали о таком приложении результатов.

Пока силы гравитации сжимают звезду и ее радиус больше радиуса Шварцшильда, силам гравитации противодействуют силы внутреннего давления звезды. Эти силы неспособны противостоять сжимающей звезду силе гравитации в том случае, если ее радиус уменьшится до гравитационного радиуса. Произойдет сжатие вещества звезды, которое физики назвали релятивистским коллапсом. Собственно, и черные дыры длительное время назывались коллапсами и только в конце шестидесятых годов с легкой руки американского физика Д. Уилера их стали называть так.

Напрашивается вывод, что если каким-либо образом сжать звезду или планету до размеров ее гравитационного радиуса, то дальше усилия можно не прилагать — она сколлапсирует сама и превратится в черную дыру. Для этого требуется немного — сжать, например, Солнце до радиуса в 3 километра.

Строгий расчет релятивистского гравитационного коллапса на основании решения уравнений общей теории относительности был выполнен в 1939 году американскими учеными Р. Оппенгеймером и Г. Волковым. Это было строгое, теоретически обоснованное предсказание существования черной дыры. Ясно, что ни Шварц-шильд, ни тем более Лаплас не предсказали существование черных дыр со всеми их свойствами гравитации. И не только на него, но и на излучение. Фотоны, составляющие это излучение, уменьшают свою энергию под действием силы гравитации черной дыры. Часть их энергии уходит на противоборство с этой силой. Уменьшение энергии фотона означает уменьшение его частоты. Другими словами, частота излучения смещается в сторону красного края спектра видимого излучения. Говорят, что излучение «краснеет». Если бы фотонам кто-то добавлял энергию, то излучение бы «голубело». Покраснение излучения, как мы уже знаем, происходит и в результате действия эффекта Доплера. Только рассматриваемое здесь красное смещение, в отличие от доплеровского, называют гравитационным. Оно обусловлено замедлением времени вблизи черной дыры под действием сил гравитации. Очень важно уловить смысл происходящего: приближающаяся к черной дыре звезда излучает такие же (белые) фотоны, что и на большом удалении от черной дыры, но удаленный наблюдатель увидит их покрасневшими, так как при движении к нему они замедляются, то есть уменьшают свою энергию. Когда звезда приблизится к границе черной дыры, далекий наблюдатель вообще перестанет ее видеть. Для него время здесь практически останавливается. Звезда для далекого наблюдателя потухает за стотысячную долю секунды. Мы упоминаем далекого наблюдателя не случайно. Часы наблюдателя, который находится на движущейся звезде, никакого замедления времени не отметят. Его нет. Оно есть только у удаленного наблюдателя, который получает всю информацию о ходе времени с помощью света, а свет его подводит, поскольку скорость фотонов замедляется, и они приходят позже обычного (когда на них не действует гравитация черной дыры).

По классической теории тяготения Ньютона одно тело, двигаясь вблизи другого, описывает разные траектории, имеющие в разных случаях форму гиперболы, параболы или эллипса. Ясно, что никаких особенностей в этом плане вблизи черной дыры из классической механики не следует. Но они следуют из теории относительности. Так, замкнутая в классическом случае эллиптическая траектория одного тела около другого становится незамкнутой, если этим другим телом является черная дыра. Пролетающее тело навивает траектории вокруг черной дыры, то приближаясь, то удаляясь от нее, но на свою старую траекторию не возвращается. Кстати, все траектории при этом располагаются в одной плоскости. Если траектория тела не подходит очень близко к черной дыре, то ее можно представить в виде поворачивающегося эллипса. Он имеется и у планет нашей Солнечной системы. Но составляет он за сто лет менее одной угловой минуты. Тем не менее он был измерен и было показано, что он точно соответствует теории относительности. Черная дыра изменяет не только траекторию движущейся вблизи нее частицы, но и ее скорость. Вблизи черной дыры частица старается двигаться быстрее. Если она попадает на удаление гравитационного радиуса, то она должна двигаться со скоростью света. Ясно, что ближе частица двигаться по кругу не может, так как для этого ей надо превысить скорость света.

Но движение тела вокруг дыры на расстояниях ближе чем три гравитационных радиуса неустойчиво, поэтому оно реально невозможно: неустойчивость приводит к возмущению движения и частица сходит с круговой траектории и (или) падает внутрь черной дыры или же улетает в направлении от дыры.

Если тело летит из космоса вблизи черной дыры, то оно может быть ею захвачено. Пролетая мимо черной дыры, тело может обернуться вокруг дыры несколько раз и снова улететь в космическое пространство. Так происходит в том случае, если тело подошло близко к окружности с радиусом, который равен двум гравитационным радиусам. Но если оно село на эту окружность, то его орбита будет навиваться на нее. Это тело уже никуда от черной дыры не денется, она его гравитационно захватила. Еще более близкий подход тела к черной дыре чреват катастрофическими для него последствиями — оно упадет в черную дыру.

Движущееся вокруг черной дыры тело излучает гравитационные волны. Вообще все небесные тела при своем движении излучают гравитационные волны. Но они несут очень малую энергию, и пока что их не удается замерить. Но если тело движется вокруг черной дыры, то излученные им за это время гравитационные волны должны содержать весьма внушительную энергию (в шесть раз больше, чем при ядерном синтезе, когда в энергию превращается только один процент массы вещества).

Движение фотонов около черной дыры также непроизвольно. Они могут подступиться к дыре не ближе чем на полтора гравитационных радиуса. Но это движение фотона неустойчиво, и он может быть сбит с траектории в ту или другую сторону. Ясно, что фотоны, как и тела, будут захвачены черной дырой, если подойдут к ней очень близко (ближе полутора гравитационных радиусов). Луч будет навиваться (как на клубок) на черную дыру, если его траектория проходила вплотную к полуторному радиусу. Если он проходил еще ближе к черной дыре, то он будет упираться в черную дыру. При удалении излучения от черной дыры происходит его покраснение, при приближении фотонов к дыре их частота (а значит, и энергия) увеличивается, и удаленный наблюдатель должен заметить поголубение света. Но для этого фотоны должны подойти очень близко к сфере Шварцшильда. Многочисленные теоретические исследования различных аспектов проблемы черных дыр позволили установить, что определяющей (и пожалуй, даже единственной) характеристикой черных дыр является их масса. В чем-то другом отличия в них нет. Можно сказать, что черные дыры с одинаковой массой являются идентичными друг другу. Что касается формы черной дыры, то было показано, что они должны быть идеально сферическими. Любое отклонение от сферичности черная дыра сбрасывает в виде излучения. Кстати, дыры сбрасывают также все возможные поля, они оставляют себе только сферическое поле тяготения, а также сферическое поле электрического заряда (в том случае, если звезда им до этого обладала). Кроме массы (это главное!) и электрического заряда черные дыры, вообще-то, характеризуются и характером их вращения. Ведь вращение определенным образом изменяет гравитационное поле дыры. В результате вращения дыры вокруг нее образуется своего рода гравитационный вихрь. Это вихревое гравитационное поле целиком определяется моментом импульса тела (равным произведению трех параметров звезды: ее радиуса, массы и скорости вращения на экваторе). Из-за вращения, создающего вихревой гравитационный вихрь, граница черной дыры несколько расширяется, она выходит за пределы сферы Шварцшильда. Сферу Шварцшильда принято называть горизонтом (за ним черная дыра, то есть уже ничего не видно). Если черная дыра вращается, то сила гравитации становится бесконечно большой еще до того, как будет достигнут горизонт. Эта граница была названа границей эргосферы. Ее принципиальное отличие от горизонта состоит в том, что из-под нее может вернуться обратно в космос попавшее туда тело. Тела в зоне между горизонтом и границей эргосферы закручиваются дырой во вращательное движение (если они не двигались первоначально супротив него), но могут с течением времени не только упасть в черную дыру, но и вылететь обратно за пределы эргосферы.

Таким образом, вращение черной дыры меняет всю картину принципиально. Границей черной дыры является ее горизонт, из-за которого ничто не возвращается. Ясно, что самая большая скорость вращения черной дыры может быть такой, при которой экваториальная линейная скорость равна скорости света.

Можно сказать, что черные дыры не представляют собой небесные тела в общепринятом смысле. Они не являются и излучением. Это действительно дыры во времени и пространстве, которые образуются в результате того, что в сильно увеличивающемся гравитационном поле очень сильно искривляется пространство и изменяется характер течения времени.

Возникает естественный вопрос: как обнаружить черную дыру? Теоретики предположили, как им казалось, много таких возможностей, но на их проверку труд экспериментаторов был потерян безрезультатно. На сегодняшний день реализовалась одна из этих возможностей. Суть ее состоит в том, что черную дыру следует искать в двойных звездных системах. Она должна выдать себя по рентгеновскому излучению, которое должно неизбежно возникать при падении газа из атмосферы «нормальной» звезды. Этот газ должен закручиваться за счет движения звезд по орбите и одновременно сплющиваться в диск под действием центробежных и гравитационных сил.

Экспериментаторы остановили свое внимание на такой двойной системе, расположенной в созвездии Лебедя. Этот источник назван Лебедь Х-1 (здесь Х от названия рентгеновских, то есть Х-лучей). Двойная звездная система Лебедь Х-1 состоит из нормальной видимой массивной звезды, масса которой в 20 раз больше массы Солнца. Парная ей звезда имеет массу, равную десяти массам Солнца. Но она является отжившей. Именно из ее окрестностей исходит рентгеновское излучение. Обе эти звезды как единое целое обращаются вокруг центра масс с периодом 5,6 суток. Процесс протекает так. Газ из атмосферы звезды-гиганта притягивается черной дырой. Орбитальным движением дыры его траектории закручиваются вокруг нее. Траектория газа представляет собой сходящуюся к центру черной дыры спираль. Движение газа к центру дыры происходит намного медленнее, чем вокруг нее. Поэтому достижение газом черной дыры по такой неэкономичной орбите происходит только через месяц. Достигнув края черной дыры, газ сваливается в дыру, поскольку там проявляется неустойчивость движения. Пока газ движется по направлению к дыре, он сильно нагревается. Это происходит в результате трения относительно холодных наружных слоев диска (температура газа здесь всего несколько десятков тысяч градусов) с горячими внутренними его частями, где температура газа достигает десяти миллионов градусов. Этот газ светит в рентгеновских лучах очень интенсивно, в тысячи раз сильнее, чем Солнце (во всех диапазонах спектра). То рентгеновское излучение, которое регистрируют приборы на Земле, происходит из очень тонкого слоя (200 километров), расположенного во внутренней части диска. Рентгеновское излучение от источника Лебедь Х-1 изменяется очень быстро, но хаотически. Его интенсивность меняется за тысячные доли секунды. Это может происходить только в том случае, если излучающий объект является очень малым, как черная дыра. Если бы вместо звезды, которую мы принимаем за черную дыру, была большая по размерам звезда, то такие быстрые изменения ее яркости в рентгеновских лучах были бы непонятны.

Таким образом, имеется почти полная уверенность, что невидимая звезда в созвездии Лебедь под номером Х-1 является черной дырой. Но «почти» остается. Астрофизики не торопятся с ним расставаться, поскольку вопрос слишком серьезный, чтобы можно было позволить себе ошибиться.

Открыто еще несколько источников рентгеновского излучения, которые по своим свойствам подобны описанному выше. А вообще-то, считается, что во Вселенной имеется много миллионов черных дыр, а возможно, число их исчисляется даже миллиардами.

Теперь перейдем к вопросу о том, в каких процессах могут погибать черные дыры. Теоретически считают, что они могут исчезать в результате определенных квантовых процессов, которые возможны только в сильном гравитационном поле. После того как из данного объекта мы убрали абсолютно все частицы и удалили любые возможные кванты, можно считать, что там имеется физический вакуум. Физический вакуум отличается от пустоты тем, что он имеет потенциальную возможность рождать виртуальные частицы и античастицы, которые из этого объема убрать никакими средствами невозможно. Это значит, что пустоты как таковой вообще нет. Чтобы виртуальные частицы (эти призраки) могли превратиться в реальные частицы, им надо сообщить энергию (вдохнуть душу). Но эта энергия должна быть привнесена извне. Надо сказать, что виртуальные частицы живут в замкнутом цикле: на миг появляются частица и античастица и тут же сливаются и исчезают. В вакууме таких частиц множество. Это установлено прямыми измерениями. Энергию к виртуальным частицам, необходимую им для того, чтобы они превратились в настоящие частицы, может передать любое поле, в том числе электромагнитное. Но таким полем может быть и гравитационное поле, что для нашего рассмотрения очень важно. Среди виртуальных частиц имеются и виртуальные фотоны, то есть частицы (кванты) электромагнитного поля. Сильное гравитационное поле приводит к превращению их в истинные, реальные фотоны. Точнее, изменение гравитационного поля во времени приводит к рождению фотонов, частота которых однозначно связана с частотой колебаний (изменений) гравитационного поля. Чтобы эффект был заметен, он должен протекать в сильном гравитационном поле. Попутно скажем, что электроны и позитроны рождаются из физического вакуума под действием очень сильного электрического поля. Из сказанного выше ясно, что в окрестности черных дыр, где имеются очень сильные изменяющиеся во времени гравитационные поля, могут рождаться частицы и античастицы. При этом может оказаться, что частица остается под горизонтом (в пределах черной дыры), а античастица окажется снаружи относительно горизонта. Эти частицы окажутся разлученными навечно. Свободная античастица уносит с собой часть энергии черной дыры.

Установлено, что температура черной дыры обратно пропорционально зависит от ее размеров. Уходящие от черной дыры частицы уносят часть ее энергии (а значит, и массы). Если этот процесс продолжается долго, то масса черной дыры уменьшается заметно. Значит, увеличивается ее температура, что, в свою очередь, ускорит процесс испарения дыры. Так этот процесс будет ускоряться. Температура при этом может достигнуть 1017 градусов. Это наступает тогда, когда масса черной дыры уменьшится до тысячи тонн. Затем должен произойти взрыв, эквивалентный взрыву одного миллиона мегатонных водородных бомб. Так может закончить свое существование черная дыра.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита19:59:08 04 ноября 2021
.
.19:59:07 04 ноября 2021
.
.19:59:05 04 ноября 2021
.
.19:59:04 04 ноября 2021
.
.19:59:02 04 ноября 2021

Смотреть все комментарии (18)
Работы, похожие на Реферат: Эволюция и химический состав вселенной

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(294399)
Комментарии (4230)
Copyright © 2005 - 2024 BestReferat.ru / реклама на сайте