Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Логические формулы и операции Виды и правила вопросов

Название: Логические формулы и операции Виды и правила вопросов
Раздел: Рефераты по логике
Тип: реферат Добавлен 14:46:03 23 июня 2011 Похожие работы
Просмотров: 372 Комментариев: 13 Оценило: 4 человек Средний балл: 4.3 Оценка: неизвестно     Скачать

Логические операции .

Каждая логическая связка рассматривается как операция над логическими высказываниями и имеет свое название и обозначение.

Выделяют следующие логические операции: инверсия; конъюнкция; дизъюнкция; импликация; эквиваленция.

1. Операция инверсия (отрицание):

Отрицание - это логическая операция, которая каждому простому высказыванию ставит в соответствие составное высказывание, заключающееся в том, что исходное высказывание отрицается.

Обозначается:

В естественном языке: соответствует словам "неверно, что..." и частице "не"

Диаграмма Эйлера-Венна:

Принимаемые значения:

Диаграмма Эйлера-Венна:

В алгебре множеств логическому отрицанию соответствует операция дополнения до универсального множества, т.е. множеству получившемуся в результате отрицания множества соответствует множество, дополняющее его до универсального множества.

Пример: Луна — спутник Земли (А) . Луна — не спутник Земли ( A)

2. Операция конъюнкция (лат. conjunctio — соединение) (логическое умножение):

Конъюнкция - это логическая операция, ставящая в соответствие каждым двум простым высказываниям составное высказывание, являющееся истинным тогда и только тогда, когда оба исходных высказывания истинны.

Обозначается:

В естественном языке: соответствует союзу "и"

Принимаемые значения:

Диаграмма Эйлера-Венна:

В алгебре множеств конъюнкции соответствует операция пересечения множеств, т.е. множеству получившемуся в результате умножения множеств А и В соответствует множество, состоящее из элементов, принадлежащих одновременно двум множествам.

Примеры:

1. 10 делится на 2 (A - и) . 5 больше 3 (B - и) . 10 делится на 2 и 5 больше 3 (A B - и) .

2. 10 не делится на 2 (A - л) . 5 больше 3 (B - и) . 10 не делится на 2 и 5 больше 3 (A B - л) .

3. 10 делится на 2 (A - и) . 5 не больше 3 (B - л) . 10 делится на 2 и 5 не больше 3 (A B - л) .

4. 10 не делится на 2 (A - л) . 5 не больше 3 (B - л) . 10 делится на 2 и 5 больше 3 (A B - л) .

3. Операция дизъюнкция (лат. disjunctio — разделение) (логическое сложение):

Дизъюнкция - это логическая операция, которая каждым двум простым высказываниям ставит в соответствие составное высказывание, являющееся ложным тогда и только тогда, когда оба исходных высказывания ложны и истинным, когда хотя бы одно из двух образующих его высказываний истинно.

Обозначается:

В естественном языке: соответствует союзу "или"

Принимаемые значения:

Диаграмма Эйлера-Венна:

В алгебре множеств дизъюнкции соответствует операция объединения множеств, т.е. множеству получившемуся в результате сложения множеств А и В соответствует множество, состоящее из элементов, принадлежащих либо множеству А, либо множеству В.

Примеры:

1. 10 делится на 2 (A - и) . 5 больше 3 (B - и) . 10 делится на 2 или 5 больше 3 (A B - и) .

2. 10 не делится на 2 (A - л) . 5 больше 3 (B - и) . 10 не делится на 2 или 5 больше 3 (A B - и) .

3. 10 делится на 2 (A - и) . 5 не больше 3 (B - л) . 10 делится на 2 или 5 не больше 3 (A B - и) .

4. 10 не делится на 2 (A - л) . 5 не больше 3 (B - л) . 10 не делится на 2 или 5 не больше 3 (A B - л) .

4. Операция импликация (лат. лат. implico — тесно связаны) (логическое сложение):

Импликация - это логическая операция, ставящая в соответствие каждым двум простым высказываниям составное высказывание, являющееся ложным тогда и только тогда, когда условие (первое высказывание) истинно, а следствие (второе высказывание) ложно.

Обозначается: о

В естественном языке: соответствует обороту "если ..., то ..."

Принимаемые значения: л

Примеры:

1. Данный четырёхугольник — квадрат (A - и) . Около данного четырёхугольника можно описать окружность (B - и) . Если данный четырёхугольник квадрат, то около него можно описать окружность (A B - и) .

2. Данный четырёхугольник — не квадрат (A - л) . Около данного четырёхугольника можно описать окружность (B - и) . Если данный четырёхугольник не квадрат, то около него можно описать окружность (A B - и) .

3. Данный четырёхугольник — квадрат (A - и) . Около данного четырёхугольника нельзя описать окружность (B - л) . Если данный четырёхугольник квадрат, то около него можно описать окружность (A B - л) .

4. Данный четырёхугольник — не квадрат (A - л) . Около данного четырёхугольника нельзя описать окружность (B - л) . Если данный четырёхугольник не квадрат, то около него нельзя описать окружность (A B - и) .

5. Операция эквиваленция (двойная импликация):

Эквиваленция – это логическая операция, ставящая в соответствие каждым двум простым высказываниям составное высказывание, являющееся истинным тогда и только тогда, когда оба исходных высказывания одновременно истинны или одновременно ложны.

Обозначается: о

В естественном языке: соответствует оборотам речи "тогда и только тогда" ; "в том и только в том случае"

Принимаемые значения:

Примеры:

1. 24 делится на 6 (A - и) . 24 делится на 3 (B - и) . 24 делится на 6 тогда и только тогда, когда 24 делится на 3 (A B - и) .

2. 24 не делится на 6 (A - л) . 24 делится на 3 (B - и) . 24 не делится на 6 тогда и только тогда, когда 24 делится на 3 (A B - л) .

3. 24 делится на 6 (A - и) . 24 не делится на 3 (B - л) . 24 делится на 6 тогда и только тогда, когда 24 делится на 3 (A B - л) .

4. 24 не делится на 6 (A - л) . 24 не делится на 3 (B - л) . 24 не делится на 6 тогда и только тогда, когда 24 не делится на 3 (A B - и) .

Порядок выполнения логических операций задается круглыми скобками. Но для уменьшения числа скобок договорились считать, что сначала выполняется операция отрицания (“не”), затем конъюнкция (“и”), после конъюнкции — дизъюнкция (“или”) и в последнюю очередь — импликация и эквиваленция.

Логические формулы.

С помощью логических переменных и символов логических операций любое высказывание можно формализовать, то есть заменить логической формулой.

Определение логической формулы:

1. Всякая логическая переменная и символы "истина" ("1" ) и "ложь" ("0" ) — формулы.
2. Если А и В — формулы, то , (А &В) , (А v В) , B) , В) — формулы.
3. Никаких других формул в алгебре логики нет.

В п. 1 определены элементарные формулы; в п. 2 даны правила образования из любых данных формул новых формул.

Пример:

Рассмотрим высказывание "если я куплю яблоки или абрикосы, то приготовлю фруктовый пирог" .

Обозначим буквой A высказывание: "купить яблоки" , буквой B - высказывание: "купить абрикосы" , буквой C - высказывание: "испечь пирог".

Тогда высказывание "если я куплю яблоки или абрикосы, то приготовлю фруктовый пирог" формализуется в виде формулы:

(A v B) C

Формула выполнимая - если при определенных сочетаниях значений переменных она принимает значение "истина" ("1" ) или "ложь" ("0" ).

Как показывает анализ формулы (A v B) C , при определённых сочетаниях значений переменных A , B и C она принимает значение "истина" , а при некоторых других сочетаниях — значение "ложь" .

Некоторые формулы принимают значение “истина” при любых значениях истинности входящих в них переменных. Таковой будет, например, формула А v A , соответствующая высказыванию “Этот треугольник прямоугольный или косоугольный” . Эта формула истинна и тогда, когда треугольник прямоугольный, и тогда, когда треугольник не прямоугольный.

Тавтология - тождественно истинная формула, или формула принимающая значение "истина" ("1" ) при любых входящих в нее значениях переменных.

Логически истинные высказывания - высказывания, которые формализуются тавтологиями.

В качестве другого примера рассмотрим формулу А & A , которой соответствует, например, высказывание “Катя самая высокая девочка в классе, и в классе есть девочки выше Кати” . Очевидно, что эта формула ложна, так как либо А , либо A обязательно ложно.

Противоречие - тождественно ложная формула, или формула принимающая значение "ложь" ("0" ) при любых входящих в нее значениях переменных.

Логически ложные высказывания - высказывания, которые формализуются противоречиями.

Равносильные формулы - две формулы А и В принимающие одинаковые значения, при одинаковых наборах значений входящих в них переменных.

Равносильность двух формул алгебры логики обозначается символом .

Равносильное преобразование формулы - замена формулы другой, ей равносильной.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Срочная помощь учащимся в написании различных работ. Бесплатные корректировки! Круглосуточная поддержка! Узнай стоимость твоей работы на сайте 64362.ru
16:06:53 12 сентября 2021
Привет студентам) если возникают трудности с любой работой (от реферата и контрольных до диплома), можете обратиться на FAST-REFERAT.RU , я там обычно заказываю, все качественно и в срок) в любом случае попробуйте, за спрос денег не берут)
Olya02:38:12 27 августа 2019
.
.02:38:11 27 августа 2019
.
.02:38:10 27 августа 2019
.
.02:38:10 27 августа 2019

Смотреть все комментарии (13)
Работы, похожие на Реферат: Логические формулы и операции Виды и правила вопросов

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(294399)
Комментарии (4230)
Copyright © 2005 - 2024 BestReferat.ru / реклама на сайте