Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Характеристика водоснабжения жилого здания

Название: Характеристика водоснабжения жилого здания
Раздел: Рефераты по строительству
Тип: реферат Добавлен 06:57:34 16 июня 2011 Похожие работы
Просмотров: 207 Комментариев: 14 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно     Скачать

Введение

Водоснабжение и водоотведение являются важнейшими санитарно техническими системами, обеспечивающими нормальную жизнедеятельность населения и всех отраслей народного хозяйства страны.

Используя природные водные источники, эти системы снабжают водой различных потребителей, а также обеспечивают очистку сточных вод, их отведение и возврат природе, защиту и охрану водоисточников от загрязнения и истощения.

Системы водоснабжения и водоотведения представляют собой сложные инженерные сооружения, устройства и оборудование, в значительной степени определяющие уровень благоустройства зданий, объектов и населенных пунктов, рентабельность и экономичность промышленных предприятий.

Системы водоснабжения – это комплекс сооружений, предназначенных для снабжения потребителей водой в необходимых количествах, требуемого качества и под требуемым напором. Системы состоят из сооружений для забора воды из источника водоснабжения, ее обработки, перекачки воды к потребителю и сооружений для ее хранения.

Эта отрасль обладает рядом технологических особенностей:

1. Постоянство (неизменное состояние технологических этапов в независимости от размеров технологий);

2. Непрерывность (реализация технологических этапов в строгой повторяющей последовательности).

В зависимости от вида обслуживаемого объекта системы водоснабжения подразделяются на городские, промышленные, сельскохозяйственные, железнодорожные. В зависимости от вида потребителей системы выполняют функции хозяйственно-питьевых, производственных, противопожарных, поливочных водопроводов.

В целом можно говорить о том что от стабильного функционирования данных систем зависит нормальная работа города, предприятий, здоровье и безопасность жителей. Мы привыкли к тому, что открыв кран из него чечет вода и порой даже не задумываемся, усилия скольких людей, бесперебойная работа машин и сооружений за этим стоят. Но стоит нам на несколько дней отключить воду и мы сразу почувствуем как начнутся сбои в организме города.

1. РАСЧЕТНАЯ ЧАСТЬ

1.1. Нормы и режимы водопотребления

Расчетные расходы воды определяют с учетом числа жителей населенного места и норм водопотребления.

Нормой хозяйственно-питьевого водопотребления в населенных местах называют количество воды в литрах, потребляемой в сутки одним жителем на хозяйственно-питьевые нужды. Норма водопотребления зависит от степени благоустройства зданий и климатических условий.

Таблица 1

Нормы водопотребления

Степень благоустройства зданий

Нормы на одного жителя среднесуточная (за год), л/сут

Застройка зданиями, оборудованными внутренним водопроводом и канализацией:

- без ванн

- с ваннами и местными водонагревателями

- с централизованным горячим водоснабжением

125-160

160-230

230-350

Меньшие значения относятся к районам с холодным климатом, а большие – к районам с теплым климатом.

В течение года и в течение суток вода для хозяйственно-питьевых целей расходуется неравномерно (летом расходуется больше, чем зимой; в дневные часы – больше, чем в ночные).

Расчетный (средний за год) суточный расход воды на хозяйственно-питьевые нужды в населенном пункте определяют по формуле

Qсут m = qж Nж /1000, м3 /сут;

Qсут m = 300*85000/1000 = 25500 м3 /сут.

Где qж – удельное водопотребление;

Nж – расчетное число жителей.

Расчетные расходы воды в сутки наибольшего и наименьшего водопотребления, м3 /сут,

Qсут max = Kсут max * Qсут m ;

Qсут min = Kсут min * Qсут m .

Коэффициент суточной неравномерности водопотребления Kсут следует принимать равным

Kсут max = 1,1 – 1,3

Kсут min = 0,7 – 0,9

Большие значения Kсут max принимают для городов с большим населением, меньшие – для городов с малым населением. Для Kсут min – наоборот.

Qсут max = 1,2*25500 = 30600 м3 /сут;

Qсут min = 0,8*25500 = 20400 м3 /сут.

Расчетные часовые расходы воды, м3 /ч,

qч max = Kч max * Qсут max /24

qч min = Kч min * Qсут min /24

Коэффициент часовой неравномерности водопотребления определяют из выражений

Kч max = amax * bmax

Kч min = amin * bmin

Где a - коэффициент, учитывающий степень благоустройства зданий: amax = 1,2-1,4; amin = 0,4-0,6 (меньшие значения для amax и большие для amin принимают для более высокой степени благоустройства зданий); b - коэффициент, учитывающий число жителей в населенном пункте.

Kч max = 1,2*1,1 = 1,32

Kч min = 0,6*0,7 = 0,42

qч max = 1,32*30600/24 = 1683 м3

qч min = 0,42*20400/24 = 357 м3

Расходы воды на пожаротушение.

Расходование воды для тушения пожаров производится эпизодически – во время пожаров. Расход воды на наружное пожаротушение (на один пожар) и количество одновременных пожаров в населенном пункте принимают по таблице, учитывающей расход воды на наружное пожаротушение в соответствии с числом жителей в населенном пункте.

Одновременно рассчитывают расход воды на внутреннее пожаротушение из расчета две струи по 2,5 л/с на один расчетный пожар.

Расчетную продолжительность тушения пожара принимают равной 3 часам.

Тогда запас воды на пожаротушение

Wп =nп (qп +2,5*2)*3*3600/1000, м3

Где nп – расчетное число пожаров; qп – норма расхода воды на один расчетный пожар, л/с.

В нашем случае nп = 2; qп = 35 л/с.

Wп = 2*(35+2,5*2)*3*3600/1000 = 864 м3

Часовой расход на пожаротушение

Qп.ч. = Wп /3 = 864/3 = 288 м3

По рассчитанному коэффициенту часовой неравномерности Kч max = 1,32 задаемся вероятным графиком распределения суточных расходов по часам суток.

По данным таблицы распределения суточных хозяйственно-питьевых расходов по часам суток при разных коэффициентах часовой неравномерности для населенных пунктов для Kч max = 1,32 строим график суточного водопотребления и совмещаем с этим графиком графики подачи воды насосами 1 и 2 подъема.


1.2 Определение объема баков водонапорных башен и резервуаров чистой воды

Вместимость бака водонапорной башни может быть определена с помощью совмещенных графиков водопотребления и работы насосной станции II подъема. Результаты вычислений помешены в таблицу 2, где отражена регулирующая роль бака водонапорной башни. Так, в период от 22 до 7ч и с 10 до 12ч утра излишки воды подаваемой насосной станцией II подъема, в размере от 0,2 до 0,9 % суточного расхода каждый час будут поступать в бак; в период с 7 до 9ч и с 12 до 22ч вода будет расходоваться из бака в размере от 0,3 до 0,8 % суточного расхода.

Таблица 2

Расчет регулирующей емкости бака водонапорной башни,

% суточного расхода

Часовые промежутки

Расход воды городом

Подача воды насосами

Поступление в бак

Расход воды из бака

Остаток в баке

0-1

1-2

2-3

3-4

4-5

5-6

6-7

7-8

8-9

9-10

10-11

11-12

12-13

13-14

14-15

15-16

16-17

17-18

18-19

19-20

20-21

21-22

22-23

23-24

3,2

3,1

3,2

3,2

3,2

3,4

3,8

4,6

5,4

5

4,8

4,6

4,5

4,4

4,6

4,6

4,4

4,3

4,4

4,5

4,5

4,8

3,8

3,7

4

4

4

4

4

4

4

4

5

5

5

5

4

4

4

4

4

4

4

4

4

4

4

4

0,8

0,9

0,8

0,8

0,8

0,6

0,2

-

-

-

0,2

0,4

-

-

-

-

-

-

-

-

-

-

0,2

0,3

-

-

-

-

-

-

-

0,6

0,4

-

-

-

0,5

0,4

0,6

0,6

0,4

0,3

0,4

0,5

0,5

0,8

-

-

1,3

2,2

3

3,8

4,6

5,2

5,4

4,8

4,4

4,4

4,6

5

4,5

4,1

3,5

2,9

2,5

2,2

1,8

1,3

0,8

0

0,2

0,5

Регулирующая емкость бака водонапорной башни – разность между максимальным и минимальным остатками воды в баке. Из таблицы 2 следует: 5,4 – 0 = 5.4 % суточного потребления:

Wр = Qсут max * 5,4/100 = 30600*5,4/100 = 1652,4 м3

Емкость баков водонапорных башен определяют из условия неблагоприятной работы всей системы, то есть исходя из предположения, что пожары происходят в часы наибольшего водопотребления и что расходование воды для собственных целей очистной станции (промывка фильтров) не прекращается.

Емкость баков водонапорных башен определяется как сумма регулирующей емкости и объема воды, необходимого для тушения в течении 10 минут одного внутреннего и одного наружного пожара:

Wб = Wр + (qп +2*2,5)*10*60/1000, м3

Wб = 1652,4+(35+5)*10*60/1000 = 1676,4 м3

Принимаем две водонапорные башни.

Емкость одного регулирующего бака составит

Wб о = 838,2 м3

Геометрические размеры бака определяют из рекомендуемого соотношения высоты и диаметра бака: Но = 0,7 Дб .

Тогда Wб о =( p Дб 2 /4)* Но = ( p Дб 2 /4)*0,7 Дб ;

Wб о = 0,55Дб 3 ;

Дб =

Диаметр бака одной башни Дб = 11,5 м.

Высота бака Но = 8 м

Емкость резервуаров чистой воды на станции очистки

Wрез = Wр +Wп +Wф + 3 qч max – 3*4,17/100 Qсут max ,

Где Wф – объем воды, необходимый для собственных нужд очистной станции
( на промывку фильтров) в течение 3 часов:

Wф = 3*(0,05-0,08)*Qсут max /24 = 3*(0,06)*30600/24=229,5

Wрез = 1655+870+230+3*1683-3*4,17/100*30600 =3975,94 ~ 4000 м3

C другой стороны, емкость резервуаров чистой воды определяется соотношением режимов работы насосных станций 1 и 2 подъема. Накопление чистой воды в резервуарах происходит в период с 1300 до 800 . За это время (19 часов) насосы 1 подъема подадут объем воды, равный 0,0417*30600*19= 24245 м3 ; насосы 2 подъема подадут из резервуаров в сеть объем воды, равный 0,04*30600*19 =23256 м3 . Необходимый объем резервуаров чистой воды

Wрез = 24245-23256=989~1000 м3

Принимаем больший объем – 1000 м3


1.3 Построение пьезометрической линии.

Подбор насосов 2 подъема.

Минимальный свободный напор в сети водопровода при максимальном хозяйственно-питьевом потреблении на вводе в здание должен приниматься при одноэтажной застройке не менее 10 м. При большей этажности на каждый этаж следует добавлять 4 м.

Нсв =10+4(Э-1)

Где Э – этажность застройки.

В нашем примере Нсв = 10+4*(5-1)=26 м


Диктующей точкой является точка a.

Пьезометрическая линия характеризует падение напора в сети в часы максимального водопотребления. Когда из-за движения воды по водоводу появляются потери напора по длине.

Высоту водонапорной башни (высота расположения дна бака башни) определяют из соотношения высот:

Нб +Zб = Zасв +hба ,

Нб = Нсв +hба -( Zб - Zа ),

Где hба – потери напора на участке от башни до диктующей точки a;

hба =i*lба ; i=(5-8)м вод.ст. на 1 км.

В нашем примере

Нб =26+6*0,5-(65-52)=16м

Пьезометрическая линия от насосной станции 2 подъема до башни определяют необходимый напор насосов 2 подъема из соотношения

Zн|| -hнб =Zб + Нбо ,

Н|| =( Zб - Zн )+( Нбо )+ hнб +(2-2,5)

Где (2-2,5) – потери набора во внутренних коммуникациях насосной станции.

В нашем примере

Н|| =65-45+16+8+6*1,5+2 = 55 м вод. ст.

Подбор насосов станции 2 подъема

Насосы подбирают по каталогам центробежных насосов для чистых жидкостей по требуемым производительности (подачи) и напору.

Из совмещенного графика водопотребления и режимов насосных станций следует, что в час максимального водопотребления (с 8 до 10 часов) подача воды насосами 2 подъема составляет 5 % от суточного хозяйственно-питьевого потребления.

С учетом пожарного водопотребления насосы второго подъема должны обеспечить подачу

Q|| =0,05 Qсут max +Qп.ч.

Q|| =0,05*30600+290=1820»1850 м3

Примем 4 насоса, тогда каждый насос должен подавать 462.5 м3 /ч при 55м вод.ст.

По каталогам подбираем марку насоса.

Требованиям удовлетворяет насос Д1250-65 (12 НДс) с параметрами: подача 500 м3 /ч, напор – 65м вод.ст., мощность двигателя – 100кВт, масса агрегата – 1680 кг.


2. ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ

2.1. Качество воды и основные методы ее очистки

Качество природной воды зависит от наличия в ней различных веществ неорганического и органического происхождения.

Содержание в воде нерастворенных веществ характеризуется мутностью в мг на литр.

Присутствие в воде гумусовых веществ характеризуется цветностью в градусах по так называемой платинокобальтовой шкале.

Содержащиеся в воде соли кальция и магния придают ей жесткость.

Загрязненность воды бактериями характеризуются количеством бактерий, содержащихся в 1 куб.см. воды.

Методы очистки воды зависят от качества природной воды, потребляемого расхода и требований к ее качеству. При очистке речной воды для хозяйственно-питьевых нужд наиболее широко применяют осветление, обесцвечивание и обеззараживание воды (дезинфекция).

Более глубоко и более эффективно осветление воды происходит при коагулировании и пропуске через «взвешенный слой» хлопьев, ранее отделенных от воды в осветлителях.

Для глубокого осветления воды применяют ее фильтрование через песчаные фильтры.

Коагулирование с последующим отстаиванием и фильтрованием, а затем хлорированием воды применяют также для устранения цветности и снижения окисления воды.

Обеззараживание воды производят хлорированием, озонированием, ультрафиолетовым облучением.

Для снижения жесткости (умягчения), обессоливания и дегазации воды применяют химические и физико-химические методы обработки воды. Их применяют одновременно с отстаиванием и фильтрованием.

2.2. Выбор технологической схемы очистки воды

В процессе очистки вода должна пройти ряд очистных сооружений, в которых осуществляются принятые методы очистки.

Наиболее распространенные технологические схемы очистки речной воды для хозяйственно-питьевых целей.

1. Глубокое осветление, обесцвечивание и обеззараживание воды путем коагулирования и последовательного осветления воды в отстойниках и на фильтрах. Природная вода насосами 1 подъема 1 подается в смеситель 3, куда одновременно подаются реагенты, приготовленные в реагентном цехе 2. После смешения с реагентами вода поступает в камеру хлопьеобразования 4, где происходит процесс агломерации взвешенных (мутность) и коллоидальных (цветность) частиц в крупные хлопья. Затем вода поступает в отстойники 5, в которых движется с малой скоростью (2-10 мм/с). При этом основная масса образовавшихся хлопьев отделяется от обрабатываемой воды и выпадает в осадок. Из отстойников воду подают на фильтры 6 для глубокого осветления путем пропуска ее через толщу песчаной загрузки. В процессе очистки в толще фильтров накапливаются загрязнения. Для их удаления фильтры


выключают из работы и промывают.

Осветленную воду обеззараживают и собирают в резервуарах чистой воды 7, где обеззараживание завершается в результате контакта с дезинфекторами (хлором, озоном).

Вода, подаваемая в сеть, не должна содержать озона, так как он вызывает коррозию труб и оборудования. Поэтому воду, обработанную озоном, выдерживают в резервуарах до завершения расходования озона.

2.


На рисунке 4 также показана схема глубокого осветления, обесцвечивания и обеззараживания воды.

Отличие от ранее описанной схемы состоит в том, что в ней отстойники заменены осветлителями, при применении которых отпадает необходимость в устройстве камеры хлопьеобразования. Процесс коагуляции взвесей и осветления воды происходит во взвешенном слое осадка.

3. Технологическая схема, представленная на рисунке 5, имеет лишь одно сооружение для осветления воды – контактные осветлители (песчаные фильтры с движением воды снизу вверх).


В них коагуляция взвесей и осветление воды происходит одновременно. Укрупнение частиц в хлопья происходит не в свободном объеме, а на поверхности зерен фильтрующего материала под действием сил прилипания (контактная коагуляция). Общий объем очистных сооружений по этой схеме значительно меньше, чем по предыдущим. Эту схему можно применять при малом содержании в воде взвешенных веществ – до 150-200 мг/л.

По рассмотренным технологическим схемам обесцвечивание воды происходит в результате сорбции коллоидных гумусовых веществ, обусловливающих цветность воды.

При выборе сооружений для осветления и обесцвечивания воды рекомендуется руководствоваться данными.

В соответствии с моими исходными данными: мутность – 200 мг/л; цветность – 90 град; по приложению выбираем для обработки воды с применением коагулянтов и флокулянтов Осветлители со взвешенным осадком – Скорые фильтры

Как правило, на очистных станциях применяют не менее двух сооружений каждого типа. Этим обеспечивается непрерывность работы очистных станций при авариях и эксплуатационных отключениях сооружений.

Взаимное высотное расположение сооружений предусматривают с таким расчетом, чтобы движение воды от сооружения к сооружению было самотечным. Разность отметок уровней воды в расположенных рядом сооружениях должна быть равна потерям напора при движении воды между сооружениями по трубопроводам и лоткам, а также в самих сооружениях.

Общие потери напора по технологической схеме обычно составляют 3,5-6 м.


2.3. Реагентное хозяйство

Коагулирование осуществляют для ускорения процесса осветления и обесцвечивания воды.

Дозу коагулянта Дк , мг/л, в расчете на Al2 (SO4 )3 , FeCl3 , Fe2 (SO4 )2 (по безводному веществу) принимают для мутных вод по таблице, для цветных вод – по формуле.



Где Ц – цветность обрабатываемой воды, град.

При одновременном содержании в воде взвешенных веществ и цветности принимают большую из доз коагулянта.

Дозу флокулянтов (в дополнение к дозам коагулянтов) следует принимать:

полиакриламида (ППА) по безводному продукту при вводе перед отстойниками по таблице.

Флокулянт вводят в воду после коагулянта.

Дозу хлорсодержащих реагентов (по активному хлору) при предварительном хлорировании и для улучшения хода коагуляции и обесцвечивания воды, а также для улучшения санитарного состояния сооружений следует принимать 3-10 мг/л. Реагенты вводят за 1-3 мин до ввода коагулянтов.

Дозы подщелачивающих реагентов Дщ , мг/л, необходимых для улучшения процесса хлопьеобразования, определяют по формуле:

Дщщкк – Що ) + 1

Где Дк – максимальная, в период подщелачивания, доза безводного коагулянта, мг/л; ек – эквивалентная масса коагулянта (безводного), мг/мг-экв, принимаемая для Al2 (SO4 )3 - 57; , FeCl3 – 54; Fe2 (SO4 )2 – 67; Кщ – коэффициент, равный для извести (по СаО) – 28; для соды (по Na2 CO3 ) – 53; Що – минимальная щелочность воды, мг-экв/л.

Реагенты вводят одновременно с вводом коагулянтов.

Потребность в реагентах для моего примера:

Доза коагулянта Al2 (SO4 )3

- по таблице Дк =30-40 мг/л;

- по формуле Дк = мг/л,

принимаем Дк =40 мг/л

Потребность в сутки максимального водопотребления

Ск = 1,05 Qсут max Дк /1000=1,05*30600*40/1000=1285,2 кг.

Здесь 0,05 Qсут max – объем воды, необходимый для собственных нужд очистной станции.

Доза флокулянта (ПАА) – по таблице.

ДПАА =0,3-0,6 мг/л, принимаем ДПАА =0,5 мг/л.

Потребность в сутки максимального водопотребления

СПАА =1,05 Qсут max * ДПАА /1000=1,05*30600*0,5/1000=16.07 кг.

Доза хлорсодержащих реагентов (по активному хлору) при предварительном хлорировании

ДCl =3-10 мг/л, принимаем ДCl =5 мг/л.

Потребность хлорсодержащих реагентов (по активному хлору) в сутки максимального водопотребления:

СCl =1,05 Qсут max * ДCl /1000=1,05*30600*3/1000=96.5 кг

Доза подщелачиваемых реагентов (извести)

Дщ =28(40/57-0,2)+1=15 мг/л.

Потребность в сутки максимального водопотребления

Сщ =1,05 Qсут max * Дщ /1000=1,05*30600*15/1000=482 кг.

2.4. Обеззараживание воды

Методы обеззараживания воды составляют четыре основные группы: термический(кипячение), химический (хлор, озон), олигодинамический (воздействие ионов благородных металлов) и физический (ультразвук, ультрафиолетовые лучи).

Наибольшее распространение получили методы второй группы. В качестве окислителей используют хлор, двуокись хлора, озон, иод, перманганат калия, перекись водорода, гипохлорит натрия и кальция. Из перечисленных окислителей на практике отдают предпочтение хлору, озону, гипохлориту натрия.

Хлор опасен при транспортировании и использовании, его утечки могут вызвать отравление людей. Кроме того, при хлорировании образуются хлорорганические соединения, в том числе – диоксин – сильнейший мутаген. При наличии в воде фенолов образуются хлорфенолы, обладающие токсичными свойствами и неприятным запахом.

Достоинство озонирования в том, что, уничтожая, бактерии, споры, вирусы, он разрушает растворенные и взвешенные в воде органические вещества. Это позволяет использовать озон не только для обеззараживания, но и для обесцвечивания и дезодорации воды. При этом природные свойства воды не изменяются. Избыток озона (в отличие от хлора) не только не ухудшает, но и значительно улучшает качество воды – устраняет цветность, привкусы и запахи.

Для обеззараживания воды выбираем метод Хлорирования.


2.5. Выбор технологического оборудования станции очистки воды

Решению вопроса о компоновке очистных сооружений должны предшествовать выбор схемы технологического процесса очистки воды, а также установление типа, числа и размеров отдельных сооружений (отстойников фильтров и д.р.). Схему очистки воды, тип сооружений и их компоновку выбирают, исходя из качества воды в источнике и требований потребителей к качеству воды и на основании технико-экономический сравнений возможных вариантов.

В принятой нами схеме очистки воды с применением коагулянтов и флокулянтов Осветлители со взвешенным осадком – Скорые фильтры.

Вода подаваемая насосной станцией 1 подъема поступает в смеситель куда одновременно подаются реагенты, приготовленные в реагентом цехе, где происходит ее тщательное перемешивание с реагентами в течении 1-2 минут. Из смесителя вода поступает на осветлитель со взвешенным слоем осадка, предназначенного для предварительного осветления воды перед фильтрованием. Для глубокого осветления воды применяют фильтры открытого типа. После фильтров осветленная вода поступает в резервуар чистой воды. В трубу подающую в резервуар вводится хлор из хлораторной. Необходимый для обеззараживания воды контакт ее с хлором обеспечивается в резервуаре. В нашем случае хлор в воду подается дважды, перед смесителем (первичное хлоривание) и после фильтров (вторичное хлорирование). Из за недостаточной щелочности исходной воды в смеситель одновременно с коагулянтом подается раствор извести через дозаторы. Для интенсификации процессов коагуляции перед камерой хлопьеобразования вводят через дозатор флокулянт – полиакриламид ПАА – 10.

Смеситель –используется обычный перегородчатый смеситель.

По выбранной нами схеме применяется осветлитель со взвешенным слоем осадка (Коридорного типа) – Который представляет собой прямоугольный в плане резервуар, разделенный на три секции. Две крайние секции являются рабочими камерами осветлителя, а средняя служит осадка уплотнителем. Осветляемая вода подается у дана осветлителя по перфорированным трубам и равномерно распределяется по площади осветлителя. Затем она проходит через взвешенный слой осадк, осветляется и по перфорированному лотку (или трубе), располагаемому на некотором расстоянии над поверхностью взвешенного слоя, отводится на фильтры.

Взвешенный слой осадка состоит из хлопьев непрерывно и хаотически двигающихся под действием потока воды, вследствие чего масса осадка во взвешенном слое постоянно перемешивается. Излишки постоянно накапливаемого садка отводятся через осадка приемные окна в осадкоуплотнитель. Осветление воды через движение ее через взвешенный слой объясняется явлением коагуляции. При движении частиц взвеси с потоком воды через взвешенный слой, который непрерывно перемешивается, обеспечивается частое столкновение их с ранее образовавшимися хлопьями и хлопьями вновь формирующимися вокруг частиц коагулянта. Процесс коагуляции и осветления воды здесь протекает интенсивнее чем в камерах хлопье образования и в отстойниках. Перед осветлителем не требуется устройства камер хлопьеобразования.

Из осветлителя воду подают на фильтры для глубокого осветления путем пропуска ее через толщу песчаной загрузки. Эти фильтра способны улавливать почти все взвеси, В нашем случае используются скорые фильтры (5,5 – 12 м/ч). Скорый безнапорный фильтр представляет собой прямоугольный железобетонный резервуар, который загружен кварцевым песком, уложенным на гравийный поддерживающий слой. Осветляемая вода по трубопроводу подается на фильтр, проходит через фильтрующею загрузку, в которой задерживаются взвешенные частицы, и собираются дренажной системой. Дренаж выполняется из перфорированных труб. Из дренажа по трубопроводу осветленная вода отводится в резервуар чистой воды.

Во зависимости от количества воды, поступающей на фильтр, и содержания в ней взвешенных веществ периодически осуществляют промывку фильтра (через 12 –72 ч)

Промывка скорых фильтров производится обратным потоком воды. Промывная вода по трубе подается в дренаж, который равномерно распределяет воду по площади фильтра. При движении воды снизу вверх через загрузку фильтрующий слой расширяется, увеличиваясь в объеме и перемешивается, в результате чего происходит отмывка зерен загрузки от загрязнений. промывная вода собирается желобами и отводится в карман. В период промывки задвижки на фильтрах предназначенных для отвода фильтрата, закрыты. Расход воды, подаваемой на промывку 1 м3 фильтрующей поверхности называется интенсивностью промывки (15-16 л/см2). Продолжительность подачи промывной воды на скорый фильтр равна 3-8 мин. После промывки фильтр снова включают в работу.

Хлорирование осветленной воды проводится перед поступлением ее в резервуар чистой воды хлорсодержащие реагенты вводят в трубопровод фильтрованной воды концентрация 2 мг/л при этом должны быть обеспеченны хорошее смешивание его с водой и достаточная продолжительность (не менее 30 мин) его контакта с водой до ее подачи потребителю. Также производится предварительное хлорирование способствующее коагуляции и позволяющее снизить расход хлора Осветленную и обеззараженную воду собирают в резервуарах чистой воды, где обеззараживание завершается в результате контакта с дезинфекторами (хлором).

Дозирование газообразного хлора осуществляется вакуумными хлораторами. Концентрация остаточного свободного хлора в воде, забираемой из резервуаров чистой воды, должна быть не менее 0.3 и не более 0.5мг\л. Хлорное хозяйство располагают в отдельно стоящих хлора торных, в которых сблокированы расходный склад хлора, испарители (в случае необходимости) и помещение для хлораторов (хлор дозаторные). Воздух, выбрасываемый в атмосферу постоянно действующими вентиляционными системами складов хлора и хлор дозаторных, удаляется через трубу при этом предусматривается его очистка.


Заключение


Список литературы

1. Илясов Г.И. Водоснабжение и водоотведение:
учебное пособие. Саратов, 1994 г.

2. Николадзе Г.И. Коммунальное водоснабжение и канализация.
М: Стройиздат, 1983 г.

3. СНиП 2.04.02-84. Водоснабжение. Наружные сети и сооружения/Госстрой СССР. М: Стройиздат, 1985г.

4. Кедров В.С. Водоснабжение и водоотведение: Учеб ник для вузов – 2 –е изд., переработанное и дополненное – М.:Стройиздат, 2002.

5. Абрамов Н.Н. Водоснабжение: Учеб ник для вузов – 3 –е изд., переработанное и дополненное – М.:Стройиздат, 1982.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита18:57:44 04 ноября 2021
.
.18:57:43 04 ноября 2021
.
.18:57:41 04 ноября 2021
.
.18:57:40 04 ноября 2021
.
.18:57:38 04 ноября 2021

Смотреть все комментарии (14)
Работы, похожие на Реферат: Характеристика водоснабжения жилого здания

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(294399)
Комментарии (4230)
Copyright © 2005 - 2024 BestReferat.ru / реклама на сайте