Лекция: Большое каноническое распределение Гиббса.
План:
1. Функция распределения системы, ограниченной воображаемыми стенками.
2. Большой канонический формализм.
3. Термодинамическая интерпретация распределений Гиббса.
1.
Рассмотрим построение термодинамического формализма, связанного с выделением термодинамической системы с помощью воображаемых стенок ( ). Несмотря на то, что определение химического потенциала представляется весьма сложной задачей (эта величина непосредственно не измеряется, а вычисляется на основе косвенных измерений, причем, достаточно сложным образом), отказ от точной фиксации числа частиц существенно упрощает рассмотрение ряда задач.
Очевидно, что рассмотренная ранее фиксация числа частиц N
с точностью до 1 шт. носит идеализированный характер и по большому счету представляет формальный прием, облегчающий анализ. В действительности же не только не только энергия, но и число частиц оказываются размыты о числу частиц около среднего значения . Как и для разброса , разброс захватывает сравнительно большое число частиц ( ).
Полагая далее, что система выделена с помощью воображаемых стенок и число N
не может быть включено в число переменных состояния системы, воспользуемся сопряженной к величиной – химическим потенциалом . Поскольку величина внутренней энергии также зависит от числа частиц ее необходимо заменить на величину (см. тему №3)
Тогда II-е начало термодинамики для квазистатических процессов, имеющее вид:
(7.1а)
преобразуется к виду:
(7.1б)
Найдем функцию распределения по микроскопическим состояниям термодинамической системы. Очевидно, эта функция должна удовлетворять ряду требований:
1. Распределение должно определять вероятность обнаружить систему в состоянии с заданными значениями N
и n
. Здесь N
– число частиц в системе (с точностью до 1 штуки), - набор квантовых чисел, определяющих микроскопическое состояние системы N
тел.
2. Желательно, чтобы в качестве макроскопических переменных, описывающих состояние термодинамической системы, использовались величины ( ).
3. Полученное распределение должно быть сосредоточенным около значения по числу частиц N
и около значения по энергии.
Сформулированное требование позволяет использовать закономерности и допущения, положенные в основу микроканонического и канонического распределений.
Забиваем Сайты В ТОП КУВАЛДОЙ - Уникальные возможности от SeoHammer
Каждая ссылка анализируется по трем пакетам оценки: SEO, Трафик и SMM.
SeoHammer делает продвижение сайта прозрачным и простым занятием.
Ссылки, вечные ссылки, статьи, упоминания, пресс-релизы - используйте по максимуму потенциал SeoHammer для продвижения вашего сайта.
Что умеет делать SeoHammer
— Продвижение в один клик, интеллектуальный подбор запросов, покупка самых лучших ссылок с высокой степенью качества у лучших бирж ссылок.
— Регулярная проверка качества ссылок по более чем 100 показателям и ежедневный пересчет показателей качества проекта.
— Все известные форматы ссылок: арендные ссылки, вечные ссылки, публикации (упоминания, мнения, отзывы, статьи, пресс-релизы).
— SeoHammer покажет, где рост или падение, а также запросы, на которые нужно обратить внимание.
SeoHammer еще предоставляет технологию Буст, она ускоряет продвижение в десятки раз,
а первые результаты появляются уже в течение первых 7 дней.
Зарегистрироваться и Начать продвижение
Очевидно, величина при фиксированном представляет среднее значение микроскопических характеристик . Тогда, учитывая сформулированную выше аксиому о равновероятности микросостояний, соответствующих заданному макросостоянию, выражение для распределения по микроскопическим состояниям , можно записать, по аналогии с микроскопическим распределением Гиббса (5.12):
. (7.2)
Здесь - сосредоточенная около нуля квазикронекоровская функция ( ), - нормировочная сумма (аналог статистического веса):
(7.3)
Как известно, основная асимптотика статистического веса Г
при не зависит от выбора типа стенок, ограничивающих термодинамическую систему. То есть она не зависит от выбора набора макроскопических параметров : ( ), ( ), ( ) и т.д., фиксирующих равновесное состояние системы. Тогда введенная величина и связанная с ней по сути являются статистическим весом Г
и энергией S
термодинамической системы
Учитывая (6.8), представляющей явное выражение функции , перепишем (7.2) в виде:

При записи (7.4) было использовано выражение (3.21) для термодинамического потенциала “омега” .
Найдем выражение для нормировочной суммы , подставляя в (7.3) выражение (6.8) для функции :

Поскольку, согласно (5.11) 
получим:
(7.5)
Для дальнейшего анализа разложим энтропию в степенной ряд по отношению числа частиц N
от среднего термодинамического значения , ограничиваясь членами второго порядка. При этом учтем: (см. ф-лу (3.28)). Тогда получим:

Подставляя полученный результат в (7.5), находим:

Учитывая большое число частиц N
и, пологая , перейдем от суммирования в последнем выражении к интегралу. Получаем:
(7.6)
Вычислим интеграл в полученном равенстве:

Подставляя полученный результат в (7.6), получаем:

Тогда вычисляя в обеих частях последнего равенства предел при и отбрасывая в правой части сомножители, растущие медленнее, чем , получаем:
(7.6)
Подставляя (7.6) в (7.4), находим:
(7.7)
Выражение (7.7) получило название большого канонического распределения Гиббса. Включая в себя каноническое распределение (6.15) как частный случай, это распределение также содержит распределение по числу частиц. Если , то (7.7) принимает вид (6.15).
Нормировочная сумма:
(7.8)
получила название большой статистической сумы. Эта величина связана с термодинамическим потенциалом посредством соотношения:
Сервис онлайн-записи на собственном Telegram-боте
Попробуйте сервис онлайн-записи VisitTime на основе вашего собственного Telegram-бота:
— Разгрузит мастера, специалиста или компанию;
— Позволит гибко управлять расписанием и загрузкой;
— Разошлет оповещения о новых услугах или акциях;
— Позволит принять оплату на карту/кошелек/счет;
— Позволит записываться на групповые и персональные посещения;
— Поможет получить от клиента отзывы о визите к вам;
— Включает в себя сервис чаевых.
Для новых пользователей первый месяц бесплатно.
Зарегистрироваться в сервисе
(7.9)
При необходимости, используя аппарат макроскопической термодинамики можно осуществить в (7.8) переход к другим переменным. Покажем, что на примере перехода от ( ) и ( ). Из (7.1) следует:
или и т.д.
Полученные равенства можно рассматривать как термодинамические уравнения относительно химического потенциала, решением которых будет выражение . А учитывая (3.21): , можно исключить и переменную , выражая ее в виде . Тогда для энтропии и, соответственно статистического веса, можно записать:
(7.10)
Аналогичным образом осуществляется пересчет и для других переменных состояния и параметров термодинамической системы.
Как и в рассмотренном ранее каноническом распределении, для большого канонического распределения можно показать, что является чрезвычайно сосредоточенным распределением как по числу частиц N
, так и по энергии Е
.
Воспользуемся аналогией с выполненным в предыдущей теме расчетом ширины канонического распределения по энергии. Тогда ширина распределения по N
рассчитывается на основе дисперсии и оказывается равной
(7.11)
Здесь - макроскопические усреднения концентрации частиц.
Тогда для относительной флуктуации числа частиц, получаем:
(7.12)
Таким образом, допустимые большим каноническим распределением состояния с числом частиц N
сосредоточены в узком интервале значений вблизи точки . Ширина этого интервала в предельном статистическом случае стремится к нулю по закону . Несложно получить и вид распределения по числу частиц. Выполняя ту же последовательность действий, что и в предыдущей теме для получения распределения по энергии , приходим к следующему распределению:
(7.13)
Легко видеть, что (7.13) с математической точки зрения представляет распределение Гаусса с математическим ожиданием и дисперсией .
Кроме того, большое математическое распределение может быть использовано для определения дисперсии энергии . Используя соотношение , проводя непосредственные вычислении и учитывая (6.19), в итоге получим:
(7.14)
2.
Введеный в предыдущем вопросе большой канонический формализм Гиббса представляет собой замкнутый аппарат равновесной статистической механики.
Запишем алгоритм проведения конкретных расчетов с использованием большого канонического распределения:
1. Ищется решение уравнения Шредингера для каждого значения N
в пределах :
(7.15)
2. Осуществляется вычисление в главной по V
(или по ) асимптотике большой кинетической суммы:
(7.16)
Зная явный вид выражения (7.16), могут быть вычислены термодинамический потенциал “омега” и все термодинамические характеристики системы:
  и т.д.
Заметим, что все термодинамические характеристики задаются в переменных ( ).
Кроме того, может быть найдено большое каноническое распределение

Это распределение позволяет рассчитать средние значения любых динамических величин, дисперсии флуктуации (при фиксированных ) и т.д.
В случае необходимости, которая, как правило, возникает, производится пересчет полученных результатов от переменных ( ) к переменным ( ), который производится на термодинамическом уровне. Уравнение

разрешается относительно .
Это позволяет исключить из результатов, полученных в пункте 2. Например,

Заметим, что процедура пересчета результатов в других переменных может быть осуществлено и при вычислении статистических сумм.
3.
Подведем итог полученным результатам в соответствии с различными способами выделения термодинамической системы из окружения. То есть фактически приведем общую структуру равновесной статистической механики, которая нами была построена, применительно к различным способам термодинамического описания систем многих частиц:
1) Система с адиабатическими стенками. В этом случае фиксируются параметры ( ). Функция распределения Wn
, определяющая структуру смешанного состояния, выражается при помощи микроканонического распределения Гиббса:
,
а аналитический вес

связан с макроскопической характеристикой – энтропией:
,
которая является термодинамическим потенциалом для переменных состояния ( ).
Такое представление имеет преимущественно общетеоретический интерес, поскольку на его основе четко просматриваются основные постулаты и ограничения. На основе которых осуществляется построение статистической механики.
2) Система в термостате, - состояние задается параметрами ( ). Функция распределения Wn
задается каноническим распределением Гиббса:

Статистическая сумма

связана с макроскопическим параметром – свободной энергией
,
являющейся термодинамическим потенциалом в переменных ( ).
3) Система, выделенная с помощью воображаемых стенок. Выбранный способ описания очень удобен и широко используется, особенно в статистической механике классических систем. В этом случае фиксированными оказываются параметры ( ), а число частиц N
оказывается микроскопическим параметром. В этом случае функция распределения вводится с помощью большого канонического распределения Гиббса:

Для выбранного способа описания связь с макроскопическими характеристиками системы осуществляется посредством большой статистической суммы:

Соответствующим термодинамическим потенциалом является потенциал :
,
который и является термодинамическим потенциалом для системы с воображаемыми стенками.
Этот способ описания также широко используется. Наиболее удобным оказалось использование этого способа в квантовой статистической механике. Относительное неудобство большого канонического формализма связано с часто возникающей необходимостью пересчета результатов к более удобным параметрам ( ).
4) Система под поршнем. В этом случае фиксируются параметры ( ), а объем V
рассматривается в качестве микроскопического параметра. Тогда функция распределения , задающая структуру смешанного состояния, имеет вид:

Здесь - “гибсовская” статистическая сумма, равная:

и связанная с термодинамическим потенциалом Гиббса:
,
характеризующим систему, заданную в переменных ( ).
Этот подход также оказывается удобным при рассмотрении некоторых частных задач.
В случае необходимости состояние термодинамической системы может быть описано и с помощью другого набора параметров. Тогда необходимо ввести соответствующие функции распределения и статистические суммы, связав последние с соответствующим термодинамическим потенциалом. Выбор конкретного способа описания не влияет на окончательный результат, однако способен существенно упростить или усложнить процесс исследования термодинамической системы. Это относится как к точным, так и к приближенным методам.
|