Контрольная работа по дисциплине «Математика»
для студентов заочного отделения
1. Найти пределы функций:
а) =; =
= = =
= = = = 0;
б) = =
=
=
= = =.6290;
в) = =
= = = 0;
г) = = = =
= ln = = ln e* = 1*56/3 = 18.667;
д) ; = =
= = ;;
е) = = =
= = + =
= - = - =
= = 2.
2. Найти производные функций:
а) = =
= ;
б) = = = ;
в) = =
= =
= =
= ;
г) = =
= =
= = ;
д) = ;
е) ; ;
;
ж) ;; ;
; ;; ;;
з) . = =
= = ;
3. С помощью методов дифференциального исчисления построить график функции
.
1 Знаменатель положительный не для всех значений Х, область определения функции имеет точку разрыва. отсюда IхI=7 или точки разрыва х = -7 и х=7.
2. Функция нечетная, следовательно график симметричен относительно центра координат. У(-х) = -У(х). Периодической функция не является.
3. Поскольку область определения вся вещественная ось, вертикальных асимтот график не имеет.
4. Найдем асимптоты при в виде у = kх+b. Имеем:
k =
b =
Таким образом при асимптотой служит прямая ОХ оси координат.
Найдем левый и правый пределы в точках разрыва функции х=-7 и х=+7
=-1,19,
.
В точке (-7:-1,19) первый разрыв функции, К разрыву функции х=7 функции приближается бесконечно близко.
5. Найдем точки пересечения с осями координат:
Точка (0:3,86) с осью ОУ.
6. Исследуем на возрастание и убывание:
=
.0;
Это говорит о том что функция возрастающая.
Строим график:
4. Найти интегралы при m=3, n=4:
а) =
= :
б)= = пусть t = arcsin4x,
получим = = .
в)=
= ;
==.
Решаем равенство и получим:
;
аналогично второе слагаемое
3- получим =
подставим все в последнее равенство
… = + +9+-+С.
г).= = =
= ==
= ….избавившись
от знаменателя получим
B+C+A=0; 25B=332; -625A=625; 25=25(B-C);
Т.е.: A=1; B= 13.28; C=-12.28;
…= = = = 2,527766.
5. Вычислить интегралы или установить их расходимость при m=3, n=4:
а) = …
пусть t = arctg(x/4), тогда и подставим и получим
… = ;
б)=
= 0,6880057.
6. Построить схематический чертеж и найти площадь фигуры, ограниченной линиями: , при m=3, n=4.
х = -1,5, у = -18,25.
точки пересечения с осью ОХ: А(-4,19:0) и В(1,19:0) с осью ОУ – С(0:-16), точка перегиба – D(-1,5:-18,25)
или
Точки пересечения двух функций:
= и т.е.: и .
Площадь получиться из выражения
= = 49,679.
График выглядит:
7. Найти частные производные функций при m=3, n=4:
а) =,
,
,
б). ;
;
8. Найти дифференциал функции: при m=3, n=4.
9. Для функции в точке найти градиент и производную по направлению при m=3, n=4.
в точке А(-4,3)
grad(z) = (-0,1429:0,1875);
=grad(z)* ()*cos=…
cos
10. Найти наибольшее и наименьшее значения функции при m=3, n=4
в области, заданной неравенствами:
.
D=AC-B;
A=
B=
C=
D=AC-B=()() - ;
найдем
;
Получим четыре точки: 1) (2,236:7,18), (1,236:0,82), (-2,236:7,18), (-2,236:0,82).
A=8+7,18*7,18-8*7,18=2,11 > 0;
= -114,74 < 0 – нет экстремума функции,
= 45097,12 > 0 – min функции = 12,279;
= 1767.38 > 0 - min функции = 65,94;
= -160,296 < 0 – нет экстремума функции.
11. Изменить порядок интегрирования при m=3, n=4:
.
= , так как
подставляя x = 0 x = 4 в последние уравнения получим
.
12. Сделать чертеж и найти объем тела, ограниченного поверхностями , и плоскостью, проходящей через точки , и .
А)см. рис.
- получим уравнение плоскости, через которую проходят точки А, В и С.
7(х-4)+7*16*(z-0)-(y-16)*4+4(z-0)+49(y-16)+16(x-4)=
23x-812+116z-45y=0
Получим пределы интегрирования:
Для z – от 0 до z=7-0,198x+0,388y. Для у – от 0 до у=х^2. Для х – от 0 до х=76,81(объем фигуры разбиваем пополам).
= =
== =
=232,109 куб.ед.,
13. Вычислить при m=3, n=4 , где , , а контур образован линиями , , .
а) непосредственно;
б) по формулам Грина.
,
P(x,y) = 4y+2x, Q(x,y) = 3x+2y, и контур С образован линиями 16y = 9x^3, y = 9, x = 0.
= =
= =
= =
= =
= =
= =
= =32,4060912,
где пределы интегрирования были получены:
и у = 9, то откуда х = 2,52.
14. Даны поле и пирамида с вершинами , , ,. Найти при m=3, n=4:
O(0:0:0), A(3:0:0), B(0:4:0), C(0:0:7).
а) поток поля через грань пирамиды в направлении нормали, составляющей острый угол с осью ;
=
= =
==
==
==…
после подстановки и преобразования однородных членов получим:
… = 8423,43 - 3336,03*у - 293,9*z^2 +118,98*у^2 – 24y^3 + 42y*z^2, т.е.
поток поля
= 8423,43 - 3336,03*у - 293,9*z^2 +118,98*у^2 – 24y^3 + 42y*z^2.
б) поток поля через внешнюю поверхность пирамиды с помощью теоремы Остроградского – Гаусса;
в) циркуляцию поля вдоль замкнутого контура ;
с помощью теоремы Стока (обход контура происходит в положительном направлении относительно внешней нормали к поверхности пирамиды).
rot(F) = ,
в нашем случае
15. Найти первообразные и вычислить значение определенного интеграла:
= .
|