Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Курсовая работа: Расчет идеального цикла газотурбинного двигателя

Название: Расчет идеального цикла газотурбинного двигателя
Раздел: Промышленность, производство
Тип: курсовая работа Добавлен 09:58:28 06 декабря 2010 Похожие работы
Просмотров: 393 Комментариев: 22 Оценило: 3 человек Средний балл: 5 Оценка: неизвестно     Скачать

Расчётно-пояснительная записка к курсовой работе

«Расчет идеального цикла ГТД»

Самара 2010

Задание

Рассчитать идеальный цикл ГТД тягой R при полёте с числом М за время τ (час) по заданной высоте Н при температуре Т3 газа перед турбиной. Исходные данные приведены в табл. 1, 2, 3, 4, 5. Масса воздуха G= 1 кг. Топливо – керосин Т-2 с начальной температурой TT = 300 K.

Таблица 1 – Исходные данные

Высота полёта H, м Число М Время t, ч Температура Т3 , К Тяга R, Н
10000 1,3 4 1350 4550

Таблица 2 – Данные МСА

Н, м Т0 , К p0 , Н/м2 кг/м3 µ×105 , Н×с/м3
10000 223,3 26500 0,414 1,45

Таблица 3 – Состав топлива

Марка керосина Химическая формула Содержание серы и влаги, % Плотность при 20ºС Низшая удельная теплота сгорания топлива Нu , кДж/кг
Т-2 С1,1 H2,15 0,005 0,755 43130

Таблица 4 – Объёмный состав воздушной смеси

Компонент N2 O2 CO2 H2 O
0,7729 0,2015 0,0083 0,0173

Таблица 5 – Молярная масса компонентов воздушной смеси

Компонент  кг/кмоль
N2 28
O2 32
CO2 44
H2 O 18

Реферат

Определены следующие параметры, характеризующие воздух в точке 0 цикла ГТД: молекулярные массы, количество вещества, мольные и массовые доли, удельные газовые постоянные, изобарные и изохорные теплоёмкости компонентов воздуха, поступающего в диффузор, показатель адиабаты.

Рассчитано оптимальное значение степени сжатия воздуха в компрессоре, обеспечивающее максимально полезную работу цикла для заданного значения температуры Т3 .

Вычислен коэффициент избытка воздуха a в камере сгорания.

Найдены значения масс, количества вещества, мольных и массовых долей компонентов рабочего тела, как смеси продуктов сгорания и избыточного воздуха. Рассчитано количество топлива, сгорающего в 1 кг воздуха. Определена масса рабочей смеси, удельная изобарная и изохорная теплоёмкости, газовая постоянная и показатель адиабаты, характеризующие смесь при температуре Т3 . Результаты расчётов сведены в таблицы.

Рассчитаны параметры состояния в характерных и нескольких промежуточных точках идеализированного цикла ГТД, определены изменения внутренней энергии, энтальпии, энтропии, теплоты, удельные работы процессов и за цикл. Изображён идеальный цикл в p-v и T-S-координатах. Определены погрешности рассчитанных и . Рассчитаны энергетические характеристики ГТД.

Введение

Авиационный газотурбинный двигатель является сложной технической системой с высокими удельными параметрами. Конструкция доводилась до совершенства на основе большого объёма экспериментальных исследований, накопленной статистики. Технические достижения в области конструкции, материалов, технологии, различных методов повышения нагрузочной способности, усталостной прочности нашли в современном двигателе самое непосредственное воплощение. В мировой практике разработаны и освоены в производстве двигатели новых поколений, где в конструкцию привнесены качественные изменения, приведшие к существенному повышению удельных эксплуатационных параметров. Продолжающие находиться в эксплуатации и выпускаться, проверенные временем и доведённые на основе анализа результатов практического использования до высокого уровня совершенства ряд моделей ГТД сформировали большой объём практической информации.

Циклы ГТД подразделяются на две основные группы: с подводом тепла при p = const и с подводом тепла при v = const.


1. Описание работы двигателя

Принципиальная схема ГТД со сгоранием топлива при p = const показана на рисунке 1. Принцип его работы следующий: при полёте самолёта набегающий поток воздуха поступает в диффузор и там сжимается. Затем попадает в компрессор 2, где опять подвергается сжатию. Далее сжатый воздух поступает в камеру сгорания 3, где происходит сгорание топливно-воздушной смеси и, следовательно, осуществляется подвод тепла. Привод компрессора осуществляется от газовой турбины 4. Пройдя через газовую турбину, продукты сгорания расширяются в реактивном сопле до атмосферного давления, и, после истечения, изобарно охлаждаются в атмосфере. Поскольку адиабатно сжимаемый в компрессоре воздух и образовавшиеся продукты сгорания, расширяющиеся на лопатках турбины и в сопловом аппарате, имеют различный состав, параметры состояния рабочего тела в различных точках термодинамического цикла должны рассчитываться с учётом этой особенности. Расход воздуха на горение и количество продуктов сгорания определяются уравнениями химических реакций окисления элементов горючего с учётом содержания их в топливе.

Рисунок 1 – Принципиальная схема ГТД с подводом тепла при
p = const: 1 – топливный насос; 2 – компрессор; 3 – камера сгорания; 4 – газовая турбина

2. Расчёт состава рабочего тела

2.1 Предварительный расчёт состава воздуха

Расчёт количества вещества, массовых и мольных долей компонентов и теплоёмкостей производится для воздуха, потребляемого двигателем самолёта на высоте полёта Н=10000 м.

Рассчитаем массовые доли по формуле:

Обозначим как – молекулярная масса смеси:

Тогда:

Рассчитаем количество вещества:


Найдём удельную газовую постоянную для каждого компонента по формуле:

(3),

где R =8,314

Удельные изобарные теплоёмкости компонентов:

Удельные изохорные теплоёмкости компонентов найдём по формуле:

(4)

Для газовой смеси определим удельную изобарную теплоёмкость:

И удельную изохорную теплоёмкость:

Показатель адиабаты:

Удельную газовую постоянную:

2.2 Определение оптимальной степени сжатия в компрессоре ГТД

Для заданного числа М полёта оптимальное значение можно получить аналитически из условия, что при его значении полезная работа цикла ГТД наибольшая. Решение сводится к отысканию максимума функции .

Этот максимум в идеальном цикле достигается при значении

(5).

Подставив исходные и рассчитанные в разделе 1.1 значения в формулу (5), получим:

2.3 Определение коэффициента избытка воздуха

Основано на обеспечении заданной температуры перед турбиной.

Для расчёта примем соотношение для данного вида топлива :

Для топлива керосин Т-2 с химической формулой :

Коэффициент избытка воздуха определяется по формуле:

(6), где:

Тогда:

2.4 Расчёт состава продуктов сгорания и рабочей смеси

Массы продуктов сгорания :

Количества вещества продуктов сгорания :

Мольные доли компонентов:

(7)

Массовые доли компонентов:

(8)

Количество топлива, сгорающего в 1 кг воздуха:

Масса рабочей смеси:

Удельные теплоёмкости рабочей смеси:

Газовая постоянная:

Показатель адиабаты:

Результаты расчётов сведём в таблицы 6 и 7.

Таблица 6 – Состав рабочего тела цикла ГТД

Характеристика Компонент
N2 O2 CO2 H2 O
0,297 0,260 0,189 0,462
Воздух 1,039 0,915 0,815 1,859
Воздух 0,742 0,655 0,626 1,397
28 32 44 18
G , кг Воздух 0,752 0,224 0,013 0,011
Пр. сгор. 0,752 0,2116 0,0244 0,0133
M , кмоль Воздух 0,0268 0,007 0,000295 0,00061
Пр. сгор. 0,027 0,0066 0,000555 0,000642
g Воздух 0,752 0,224 0,013 0,011
Пр. сгор. 0,751 0,2113 0,0244 0,0133
r Воздух 0,7729 0,2015 0,0083 0,0173
Пр. сгор. 0,7759 0,1896 0,0159 0,0184

Таблица 7 – Характеристики рабочего тела в цикле ГТД

Рабочее тело Характеристика
G , кг
Воздух 1,015 0,727 0,288 1,396 1
Продукты сгорания 1,018 0,729 0,289 1,396 1,0013

3. Расчет основных параметров состояния рабочего тела в узловых точках цикла ГТД

Прежде чем перейти к расчёту основных термодинамических параметров состояния рабочего тела в узловых точках цикла ГТД, рассчитаем плотность воздуха, поступающего в диффузор, при известных p0, R и Т0 :

Точка 1. Процесс 0–1 – адиабатное сжатие воздуха в диффузоре:

Точка 2. Процесс 1–2 – адиабатное сжатие воздуха в компрессоре :

Точка 3. Процесс 2–3 – изобарный подвод тепла в ка мере сгорания:

, – степень повышения температуры

Точка 4. Процесс 3–4 – адиабатное расширение продуктов сгорания в турбине:

Точка 5. Процесс 4–5 – адиабатное расширение в реактивном сопле ГТД до давления окружающей среды:

4. Расчет калорических величин цикла ГТД

4.1 Определение изменений калорических величин в процессах цикла

Внутренняя энергия в процессе:

(9)

Энтальпия:

(10)

Энтропия для изобарного процесса вычисляется по формуле:

(11)

4.2 Расчёт теплоты процессов и тепла за цикл

Подводимую и отводимую удельные теплоты в изобарном процессе рассчитаем по формуле:

(12)

Таким образом, .

Вычислим : .

4.3 Расчёт работы процесса и работы за цикл

– работа сжатия газа в диффузоре

– работа сжатия газа в компрессоре

– работа газа в турбине

– работа реактивного сопла

Рассчитаем :

Результаты расчётов представлены в таблице 8.

Таблица 8 – Основные параметры состояния рабочего тела в узловых точках цикла, изменение калорических параметров в процессах и за весь цикл идеального ГТД

Значения Точки Для цикла
0 1 2 3 4 5
0,265 0,736 5,89 5,89 2,94 0,265 -
2,427 1,17 0,265 0,66 1,084 6,053 -
223,3 299 542 1350 1107 557 -
Значения Процесс Для цикла
0–1 1–2 2–3 3–4 4–5 5–0
55 177 589 -177 -401 -243 0
77 247 822 -247 -560 -339 0
0 0 0,9 0 0 -0,9 0
0 0 822 0 0 -339 483
-77 -247 0 247 560 0 483

5. Расчет параметров состояния рабочего тела в промежуточных точках процессов сжатия и расширения

5.1 Расчёт для процессов, изображаемых в p - v -координатах

Определение значений параметров p и v в промежуточных точках процессов 1–2, 3–4 и 4–5 позволяет построить достаточно точные графики. Поскольку процессы 1–2 и 3–4–5 адиабатные, то для любой пары точек на них справедливы соотношения:

Отсюда, задаваясь значениями параметров и используя известные величины , найдём параметры промежуточных точек:

Значения точек сведём в таблицу 9.

Промежуточные точки процессов также, как и характерные, откладываем на графике p-v и через них проводим плавную кривую процесса.

5.2 Расчёт для процессов, изображаемых в T - S -координатах

Для построения цикла ГТД в T-S координатах необходимо интервалы изменения температур от до и до разбить на три примерно равные части. Для значений температур процессов , , , вычисляем соответствующие изменения энтропии рабочего тела в процессах 2–3 и 0–5 по соотношениям:

Вычислим параметры промежуточных точек для построения графика цикла ГТД в T-S координатах:

Значения полученных точек отразим в таблице 9.

Полученные изменения энтропии откладываем в принятом масштабе на T-S диаграмме и по выбранным значениям Т находим координаты промежуточных точек процесса, через которые проводим плавную кривую.

Таблица 9 – Параметры состояния рабочего тела в промежуточных точках процессов и изменение энтропии

Параметр Точки
a b c d e f g
1,06 1,51 2,42 4,50 1,25 0,71 0,47
0,9 0,7 0,5 0,8 2 3 4
Параметр
T , K 811 1081 446 335
Параметр Процесс
2-a¢ 2-b¢ 0-c¢ 0-d¢
0,410 0,703 0,702 0,412

6. Расчет энергетических характеристик ГТД

Вычислим скорости набегающего потока С0 и скорость истечения газа из реактивного сопла С5 , а также удельную тягу двигателя Rуд , секундный расход воздуха Gвозд , массу двигателя Gдв , суммарную массу топлива , термический КПД и термический КПД цикла Карно , действующего в том же интервале максимальной и минимальной температур.

Скорость набегающего потока:

Скорость истечения рабочего тела из сопла двигателя:

Удельная тяга двигателя:

Расход воздуха:

Масса двигателя:

Суммарная масса топлива за время полёта:

Термический коэффициент полезного действия ГТД:

Термический коэффициент полезного действия ГТД по циклу Карно:

Таблица 10 – Энергетические характеристики идеального ГТД

C0 , м/с C5 , м/с
8 483 18 390 1058
Gдв , кг , кг Gвозд , кг/с Rуд , м/с
122,5 352,5 59 83 6,80 669

Список использованных источников

1. Мухачев Г.А., Щукин В.Е. Термодинамика и теплопередача. М.: Высшая школа, 1991 г. – 400 с.

2. Кирилин В.А., Сычев В.В., Шейндлин А.Е. Техническая термодинамика. М: Энергоатомиздат, 1983 г. – 416 с.

3. Сборник задач по технической термодинамике и теплопередаче / Под редакцией Б.Н. Юдаева. М.: Высшая школа, 1968 г. – 372 с.

4. Требования к оформлению учебных текстовых документов: Метод. указания/ Сост. В.Н. Белозерцев, В.В. Бирюк, А.П. Толстоногов/ Куйбышев. авиац. ин-т. Куйбышев, 1988. – 29 с.

5. Белозерцев В.Н., Бирюк В.В., Толстоногов А.П. Методические указания по оформлению пояснительной записки к курсовой работе (проекту)/ Куйбышев. авиац. ин-т. Куйбышев, 1987. – 16 с.

6. Меркулов А.П. Техническая термодинамика: Конспект лекций/ Куйбышев. авиац. ин-т. Куйбышев, 1990. – 235 с.

7. Толстоногов А.П. Техническая термодинамика: Конспект лекций/ Куйбышев. авиац. ин-т. Куйбышев, 1990. – 100 с.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита16:24:08 04 ноября 2021
.
.16:24:06 04 ноября 2021
.
.16:24:03 04 ноября 2021
.
.16:24:01 04 ноября 2021
.
.16:23:58 04 ноября 2021

Смотреть все комментарии (22)
Работы, похожие на Курсовая работа: Расчет идеального цикла газотурбинного двигателя

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(294402)
Комментарии (4230)
Copyright © 2005 - 2024 BestReferat.ru / реклама на сайте