Федеральное агентство по образованию
Государственное образовательное учреждение высшего профессионального образования Вятский государственный гуманитарный университет
Математический факультет
Кафедра алгебры и геометрии
Выпускная квалификационная работа
Положительные и ограниченные полукольца
Выполнил:
студент V курса математического факультета
Ворожцов Вячеслав Андреевич _____
Научный руководитель:
кандидат физико-математических наук, доцент кафедры алгебры и геометрии В.В. Чермных ________
Рецензент:
доктор физико-математических наук, профессор кафедры алгебры и геометрии Е.М. Вечтомов _______
Допущена к защите в государственной аттестационной комиссии
«___» __________2005 г. Зав. кафедрой Е.М. Вечтомов
«___»___________2005 г. Декан факультета В.И. Варанкина
Киров
2005
Содержание
Введение........................................................................................................... 3
Глава 1. Основные понятия теории полуколец ............................................. 4
1.1. Определение полукольца. Примеры.................................................. 4
1.2. Дистрибутивные решетки.................................................................... 5
1.3. Идеалы полуколец............................................................................... 6
Глава 2 Положительные и ограниченные полукольца.................................. 7
2.1. Определение и примеры положительных и ограниченных полуколец 7
2.2. Основные свойства положительных и ограниченных полуколец..... 7
Библиографический список........................................................................... 16
Введение
Теория полуколец – это раздел современной алгебры, обобщающий как кольца, так и дистрибутивные решетки. Понятие полукольца возникло в 30-х годах прошлого столетия. Как самостоятельная теория полукольца начали изучаться в 50-е годы. Особенно интенсивно теория полуколец развивается последние 20 лет, что вызвано не только теоретическим интересом, но и многочисленными ее приложениями.
Целью данной работы является изучение классов положительных и ограниченных полуколец, рассмотрение основных свойств данных алгебраических объектов, часть из которых доказывается автором работы самостоятельно; приведены примеры полуколец.
Работа состоит из 2 глав. В первую главу вошли основные определения и факты, на которые опирается эта работа. Вторая – основная часть всей работы, в ней рассмотрены определения и свойства положительных и ограниченных полуколец, приведены примеры, доказаны некоторые теоремы.
Глава
I
. «Основные понятия теории полуколец».
1.1. Определение полукольца. Примеры.
Определение полукольца
: Непустое множество S
с бинарными операциями +
и · называется полукольцом
, если выполняются следующие аксиомы:
1. (
S
,+)
– коммутативная полугруппа с нейтральным элементом 0;
· Ассоциативность: ;
· Коммутативность: ;
· Существование нейтрального элемента: .
2. (
S
,·)
– полугруппа:
· Ассоциативность: ;
3. Умножение дистрибутивно относительно сложения:
· левая дистрибутивность: а(в+с)=ав+ас
;
· правая дистрибутивность: (а+в)с=ас+вс
.
4.
Мультипликативное свойство0:
· .
Эта аксиоматика появилась в 1934 году и ее автором является Вандовер.
Полукольцо Sназывается коммутативным
, если операция в нем коммутативна: .
Полукольцо Sназывается полукольцом с единицей
, если в нем существует нейтральный элемент по умножению, который называется единицей (1)
:
Примеры полуколец:
1. <
N
,+,·>,
где N
– множество неотрицательных целых чисел с обычными операциями +
и ·;
2. <{0},+,·>
- тривиальное полукольцо;
3. Двухэлементные полукольца:<Z
2
,+,·>, <В,+,·> (в В 1+1=1);
4. Множество матриц с элементами из полукольца N
и операциями + и ;
5. Множества N, Z, Q+
, Q, R+
, R и введенных на них различных комбинаций операций: обычные сложение и умножение, максимум и минимум двух чисел, НОД и НОК, когда они определены.
Полукольцо с импликацией называется мультипликативно (аддитивно) сократимым
.
Полукольцо, в котором выполняется равенство , называется мультипликативно (аддитивно) идемпотентным.
1.2. Дистрибутивные решетки
.
Пусть L
– произвольное множество. Введем наL
отношение положив,
.
Отношением порядка
называется рефлексивное, транзитивное, антисимметричное бинарное отношение на множестве L
, при этом множество L
назовем частично упорядоченным множеством.
Отношение на множестве L является отношением порядка.
Пусть M
– непустое подмножество частично упорядоченного множества L
. Нижней гранью
множества M
называется такой элемент , что для любого . Нижняя граньm
множества M
называется точной нижней гранью, если , где n
– произвольная нижняя грань множества M
. Двойственным образом определяется точная верхняя грань.
Частично упорядоченное множество L
называется решеткой
, если любые два элемента имеют точную верхнюю и точную нижнюю грани; решетка называется дистрибутивной
, если в ней выполняются дистрибутивные законы
:
Кроме этого определения существует еще одно определение дистрибутивной решетки. Алгебраическая система L
с двумя бинарными операциями сложения +
и умножения ∙ называется решеткой
, если (
L
, +)
и (
L
,∙)
являются идемпотентными коммутативными полугруппами и операции связаны законами поглощения
,;
Решетка называется дистрибутивной
, если для любых , ограниченной
, если она имеет 0 и 1.
1.3. Идеалы полуколец.
Непустое подмножество I
полукольца S
называется левым (правым) идеалом
полукольца S
, если для любых элементов a
,
bI
,
sS
элементы a
+
b
и sa
(
as
)
принадлежат I
.
Непустое подмножество, являющееся одновременно левым и правым идеалом, называется двусторонним идеалом
или просто идеалом
полукольца. Идеал, отличный от полукольца S
называется собственным
. Наименьший из всех (левых) идеалов, содержащий элемент a
S
, называется главным
(главным левым)
идеалом, порожденным элементом
a
. Обозначается (
a
)
или SaS
,
односторонние Sa
и aS
– левый и правый соответственно. Множество всех элементов принадлежащих главному идеалу можно записать так
.
Собственный идеал M
полукольца Sназывается максимальным (максимальным правым) идеалом
, если влечет M
=
A
или A
=
S
для каждого идеала A
.
Примерами идеалов могут служить следующие подмножества:
1. {0}
– нулевой идеал;
2. S
– идеал, совпадающий со всем полукольцом;
3. Идеал на полукольце : ;
4. Главный идеал ограниченной дистрибутивной решетки L
, порожденный элементом a
:.
Глава
II
«Положительные и ограниченные полукольца».
2.1. Определение, примеры и основные свойства.
Полукольцо S
с 1
называется положительным
, если для любого элемента а
S
элемент а+1
обратим в S
, т.е..
Примерами положительных полуколец служат следующие алгебраические системы:
1. ограниченные дистрибутивные решетки;
2. полукольца непрерывных R
+
- значных функций;
3. множество всех идеалов полукольца, с операциями сложения и умножения.
Полукольцо S
называется ограниченым
, если для любого
выполняется
. Ограниченное полукольцо – частный случай положительного полукольца.
Примеры ограниченных полуколец:
1. ограниченные дистрибутивные решетки;
2. множество всех идеалов полукольца, с операциями сложения и умножения.
2.1.Основные свойства положительных и ограниченных полуколец:
I
. Для полукольца
S
следующие условия равносильны:
1.
S
– положительное полукольцо;
2. для любого максимального одностороннего идеала
M
в
S
и любых a и b
S
(
a
+
b
M
)
(
a
M
&
b
M
).
Доказательство:
12. Пусть для произвольных и максимального правого идеала M
.
Предположим, что , тогда и для некоторых и . Имеем:
.
В левой части последнего равенства – элемент из M
, тогда как в правой части обратимый справа элемент; противоречие.
21. Пусть выполнено 2 и с
– произвольный элемент из S
. Элемент 1+с
не лежит ни в одном максимальном одностороннем идеале полукольца S
(т.к. в противном случае в силу условия 2 в идеале должен лежать элемент 1
, противоречие), значит, 1+с
обратим.
II
. В положительном полукольце
S
справедливы импликации:
Доказательство
. Пусть . Поскольку S
положительно, то для x
+1
найдется некоторый , такой что . Тогда
,т.к.. Получили y
=1
и значит .
Таким образом мы доказали, если положительное полукольцо мультипликативно идемпотентно, то оно ограниченно,
Теперь, пусть , тогда ,т.е. такое полукольцо еще и аддитивно идемпотентно.
Поскольку выполняется для , то для x
=1,
также выполняется. Обратно, 1+1=1
, помножим обе части на x
и получим необходимое равенство.
III
. Полукольцо
S
положительно тогда и только тогда, когда для любого элемента и любого обратимого элемента элемент обратим.
Доказательство.
Полукольцо положительно, следовательно, элемент - обратим. Умножим обратимый элемент на обратимый, получим обратимый.
В левой части обратимый элемент, значит и в правой элемент тоже обратим.
и – обратимы, тогда их произведение также обратимо , значит обратим.
IV
. Для коммутативного положительного полукольца
S
равносильны следующие условия:
1.
S
– дистрибутивная решетка.
2.
Доказательство.
. Очевидно.
. По свойству 2 следует , тогда:
и .
Эти условия наряду с ассоциативностью, коммутативностью и идемпотентными законами определяют дистрибутивную решетку.
V
. В ограниченном полукольце единица 1 – единственный обратимый элемент.
Доказательство.
Пусть есть некоторый обратимый элемент u
,
и
VI
. Пусть
a
– фиксированный элемент полукольца
S
, тогда каждое из утверждений влечет следующее утверждение:
1.
a
+1=1
;
2.
3.
Доказательство.
. Докажем методом математической индукции по числу n
.
I. База. к=1
. (выполняется по условию).
II. Индуктивное предположение. Пусть для к<
n
условие выполняется, т.е.
Рассмотрим для k=n
и a
+1=1
Из Iи IIСледует .
. .
Можно выбрать из всего количества N
,
некоторое число, для которого тоже данное выражение будет верно.
Примером того , что условие 3 не влечет условие 1 является полукольцо матриц . Зафиксируем элемент , где . Для n
=2
верно, но совсем неверно.
VII
. Если
S
– полукольцо с мультипликативным сокращением и аддитивно идемпотентно, то все утверждения предыдущего свойства равносильны.
Доказательство.
Осталось доказать .
Имеем . Добавим к правой и левой части выражения равные элементы :
В силу аддитивной идемпотентности мы можем подбирать коэффициенты перед . В соответствии с биномом Ньютона, подберем коэффициенты и получим:
Используя мультипликативную сократимость, получим a
+1=1
. Что и доказывает равносильность условий 1 – 3.
VIII
. Пусть
S
– ограниченное полукольцо, и существует такое , что для всех . Тогда:
1. для всех ;
2. - коммутативное ограниченное полукольцо с 1, где
I
– множество всех мультипликативных идемпотентов из
S
, а операцияопределяется так:
.
Доказательство.
1. Возьмем .
Тогда , т.к. .
Для доказательства понадобится
Лемма:
В
ограниченном полукольце
.
Доказательство:
ММИ по числу nв .
I. База. n
=1
. Из условия ограниченности
II. И.П. n
=
i
-1
.
Из условия IIи ограниченности:
.
По ИП:
Из условий I,IIполучили, что данное равенство верно для , лемма доказана.
Рассмотрим :
Поскольку степень равна 2
n
-1
, то в каждом из составляющих сумму слагаемых, либо (1 группа), либо (2 группа), и только так.
Среди слагаемых 1 группы имеется член . Этот член в сумме с каждым слагаемым 1 группы будет давать самого себя, при условии и лемме 1. из группы 1 останется только элемент
Аналогично с элементами группы 2, в которой имеется элемент , который и останется. Получаем
2.Прежде всего проверим замкнутость операций и + на множествеI
.
(1) Поскольку в качестве аддитивной операции выбрано сложение, и все элементы из полукольца, значит (I,+) – коммутативная полугруппа с нейтральным элементом 0.
(2) Докажем, что - коммутативная полугруппа с нейтральным элементом 1:
a). Ассоциативность:
Рассмотрим элемент
Элемент X
состоит из таких слагаемых, которые получены при умножении, кроме тех которые получены при произведении со всеми 1
, или со всеми с.
Элемент имеется в качестве сомножителя в каждом слагаемом X
, т.е.
С другой стороны
Таким образом, правые части рассматриваемых тождеств равны, значит ассоциативность доказана.
b). 1 – нейтральный элемент:
с). Коммутативность:
,
1.
2.
Из 1 и 2 следует , по причине равенств правых частей каждого, а значит следует равенство . Коммутативность доказана. - коммутативная полугруппа с нейтральным элементом 1.
(3) Дистрибутивность:
(4)
Все аксиомы полукольца доказаны, а значит - коммутативное полукольцо и его элементы – элементы ограниченного полукольца, значит полукольцо – ограничено.
IX
. Если в положительном полукольце
S
выполняется равенство
,
то
S
– аддитивно идемпотентно.
Доказательство.
Рассмотрим t
>1
Рассмотрим t=
1,
…
т.к. полукольцо положительно, то в обеих частях обратимые элементы, домножим на обратный и получим 1+1=1, умножим обе части на u, получим u+u=u, что и означает аддитивную идемпотентность.
X
. В положительном полукольце
S
справедливо следующее тождество:
Доказательство.
Домножим на обратный к :
Получим:
Что и требовалось доказать.
Библиографический список
1. Чермных, В.В. Полукольца [Текст] / В.В. Чермных – Киров: Изд-во ВГПУ, 1997. – ст.7 – 87.
2. Вечтомов, Е.М. Введение в полукольца [Текст] / Е.М. Вечтомов – Киров: Издательство ВГ ПУ, 2000. – ст.5 - 30.
|