Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Транспорт веществ через биологические мембраны 2

Название: Транспорт веществ через биологические мембраны 2
Раздел: Рефераты по биологии
Тип: реферат Добавлен 00:52:53 29 июня 2011 Похожие работы
Просмотров: 1143 Комментариев: 19 Оценило: 4 человек Средний балл: 5 Оценка: неизвестно     Скачать

ВВЕДЕНИЕ

Со времен Р. Вирхова известно, что живая клетка - это элементарная ячейка биологической организации, обеспечивающая все функции организма. Среди многообразных явлений, протекающих в клетке, важное место занимают активный и пассивный транспорт веществ, осмос, фильтрация и биоэлектрогенез. В настоящее время стало очевидно, что эти явления так или иначе определяются барьерными свойствами клеточных мембран. Клетка - открытая система, которая непрерывно обменивается с окружающей средой веществом и энергией. Во многих случаях биологического транспорта основой переноса веществ является их диффузия через клеточную или многоклеточную мембрану. Способы диффузионного переноса многообразны (рис. 1): диффузия жирорастворимых веществ через липидную часть мембраны, перенос гидрофильных веществ через поры, образуемые мембранными липидами и белками, облегченная диффузия с участием специальных молекул-переносчиков, избирательный транспорт ионов через ионные каналы. Однако в процессе эволюции живая клетка создала особый способ переноса, получивший название активного транспорта. В этом случае перенос вещества идет против перепада концентрации и поэтому сопряжен с использованием энергии, универсальным источником которой в клетке является молекула аденозинтрифосфорной кислоты.

ТРАНСПОРТ ВЕЩЕСТВ ЧЕРЕЗ БИОЛОГИЧЕСКИЕ МЕМБРАНЫ

Живые системы на всех уровнях организации - открытые системы. Элементарная ячейка жизни - клетка и клеточные органеллы тоже открытые системы. Поэтому транспорт веществ через биологические мембраны - необходимое условие жизни. С переносом веществ через мембраны связаны процессы метаболизма клетки, биоэнергетические процессы, образование биопотенциалов, генерация нервного импульса и др. Нарушение транспорта веществ через биомембраны приводит к различным патологиям. Лечение часто связано с проникновением лекарств через клеточные мембраны.

Пассивный и активный транспорт веществ

Транспорт веществ через биологические мембраны можно разделить на два основных типа: пассивный и активный. Определения пассивного и активного транспорта связаны с понятием электрохимического потенциала. Известно, что движущей силой любого переноса является перепад энергии. Свободная энергия (энергия Гиббса) определяется при постоянном давлении, температуре и количестве переносимых частиц. Последнее обстоятельство удобно для описания переноса частиц вещества через мембрану с одной поверхности на другую.

Электрохимический потенциал - величина, численно равная энергии Гиббса на один моль данного вещества, помещенного в электрическое поле. Для разведенных растворов

где R = 8,31 Дж/(К " моль) - универсальная газовая постоянная, F = 96 500 Кл/моль (число Фарадея), Z - заряд иона электролита (в элементарных единицах заряда), j - потенциал электрического поля.

Пассивный транспорт идет в направлении перепада электрохимического потенциала вещества, происходит самопроизвольно и не требует свободной энергии АТФ.

Активный транспорт - это такой процесс, при котором перенос происходит из места с меньшим значением электрохимического потенциала к месту с большим его значением. Этот процесс, сопровождающийся ростом энергии, не может идти самопроизвольно, а только в сопряжении с процессом гидролиза АТФ, то есть за счет затраты энергии Гиббса, запасенной в макроэргических связях АТФ.

Плотность потока вещества jм - количество вещества в единицу времени через единицу площади - при пассивном транспорте подчиняется уравнению Теорелла

где U - подвижность частиц, С - концентрация. Знак минус показывает, что перенос происходит в сторону убывания .

Подставив в (2) выражение для электрохимического потенциала (1), получим для разбавленных растворов уравнение Нернста-Планка:

Итак, могут быть две причины переноса вещества при пассивном транспорте: градиент концентрации dC / dx и градиент электростатического потенциала dj / dx. В отдельных случаях вследствие сопряжения этих двух причин может происходить пассивный перенос вещества от мест с меньшей концентрацией к местам с большей концентрацией за счет энергии электрического поля.

В случае неэлектролитов (Z = 0) или постоянства электрического поля (dj / dx = 0) уравнение Теорелла переходит в уравнение

Согласно соотношению Эйнштейна, URT = D, где D - коэффициент диффузии, и, подставляя, получаем закон Фика

Виды пассивного транспорта

На рис. 1 представлены основные разновидности диффузии веществ через мембрану. Диффузия - самопроизвольное перемещение вещества из мест с большей их концентрацией в места с меньшей концентрацией вещества вследствие хаотического теплового движения частиц. Диффузия вещества через липидный бислой вызывается градиентом концентрации в мембране. Плотность потока вещества по закону Фика

где - концентрация вещества в мембране около одной ее поверхности и - около другой, l - толщина мембраны.

Так как измерить концентрации и трудно, на практике пользуются формулой, связывающей плотность потока вещества через мембрану с концентрациями этого вещества не внутри мембраны, а снаружи в растворах около поверхностей мембраны - С1 и С2 :

jм = P (C1 - C2),

где Р - коэффициент проницаемости.

Если считать концентрации вещества у поверхности в мембране прямо пропорциональными концентрациям у поверхности вне мембраны С м ~ С, то

K - коэффициент распределения - показывает, какую часть концентрации у поверхности вне мембраны составляет концентрация у поверхности мембраны, но внутри ее.

Из уравнений (6) и (8) видно, что коэффициент проницаемости

Этот коэффициент удобен, поскольку имеет размерность линейной скорости (в м/с) и может быть определен по результатам измерения мембранных потенциалов.

Коэффициент проницаемости, как видно из формулы, тем больше, чем больше коэффициент диффузии D, чем тоньше мембрана и чем лучше вещество растворяется в липидной фазе мембраны (чем больше К ). Хорошо растворимы в липидной фазе мембраны неполярные вещества, например: органические и жирные кислоты, эфиры. Естественно, эти вещества сравнительно легко проходят через клеточные мембраны, обладая повышенным сродством к липидной фазе мембран. В то же время плохо проходят через липидный бислой мембраны полярные вещества: вода, неорганические соли, сахара, аминокислоты. Так, величины Р для воды и мочевины равны соответственно 10 мкм/с и 1 пм/с. На первый взгляд представляется труднообъяснимым сравнительно большое значение Р для воды, полярного вещества, нерастворимого в липидах. Очевидно, что в этом случае речь может идти о переносе воды через наполненные водой белковые и липидные поры. Однако в последнее время помимо гидрофильных пор проникновение через мембрану мелких полярных молекул связывают с образованием между жирнокислотными хвостами фосфолипидных молекул при их тепловом движении небольших свободных полостей - кинков (от англ. kink - петля). Вследствие теплового движения хвостов молекул фосфолипидов кинки могут перемещаться поперек мембраны и переносить попавшие в них мелкие молекулы, в первую очередь молекулы воды.

Через гидрофильные липидные и белковые поры сквозь мембрану проникают молекулы нерастворимых в липидах веществ и водорастворимые гидратированные ионы, окруженные молекулами воды. Для жиронерастворимых веществ и ионов мембрана выступает как молекулярное сито: чем больше размер частицы, тем меньше проницаемость мембраны для этого вещества. Избирательность переноса обеспечивается набором в мембране пор определенного радиуса, соответствующих размеру проникающей частицы. Это распределение зависит от мембранного потенциала. Так, избирательные для ионов калия поры в мембране эритроцитов имеют сравнительно низкий коэффициент проницаемости, равный 4 пм/с при мембранном потенциале 80 мВ, который уменьшается в четыре раза с понижением потенциала до 40 мВ. Проницаемость мембраны аксона кальмара для ионов калия при уровне потенциала возбуждения определяется калиевыми каналами, радиус которых численно оценивается как сумма кристаллического радиуса иона калия и толщины одной гидратной оболочки (0,133 нм + 0,272 нм = 0,405 нм). Следует подчеркнуть, что селективность ионных каналов неабсолютна, каналы доступны и для других ионов, но с меньшими значениями Р.

Максимальная величина Р соответствует ионам калия. Ионы с большими кристаллическими радиусами (рубидий, цезий) имеют меньшие Р, по-видимому, потому, что их размеры с одной гидратной оболочкой превышают размер канала. Менее очевидна причина сравнительно низкого Р для ионов лития и натрия, имеющих меньший сравнительно с калием радиус. Исходя из представления о мембране как молекулярном сите можно было бы думать, что они должны свободно проходить через калиевые каналы. Одно из возможных решений этого противоречия предложено Л. Муллинзом. Он предполагает, что в растворе вне поры каждый ион имеет гидратную оболочку, состоящую из трех сферических слоев молекул воды. При вхождении в пору гидратированный ион "раздевается", теряя воду послойно. Пора будет проницаема для иона, если ее диаметр точно соответствует диаметру любой из этих сферических оболочек. Как правило, в поре ион остается с одной гидратной оболочкой. Расчет, приведенный выше, показывает, что радиус калиевой поры составит в этом случае 0,405 нм. Гидратированные ионы натрия и лития, размеры которых не кратны размерам поры, будут испытывать затруднение при прохождении через нее. Отмечено своеобразное "квантование" гидратированных ионов по их размерам при прохождении через поры.

Облегченная диффузия происходит при участии молекул переносчиков. Известно, например, что антибиотик валиномицин - переносчик ионов калия. Валиномицин является пептидом с молекулярной массой 1111. В липидной фазе молекула валиномицина имеет форму манжетки, устланной внутри полярными группами, а снаружи неполярными гидрофобными остатками молекул валина.

Особенности химического строения валиномицина позволяют образовывать комплекс с ионами калия, попадающими внутрь молекулы-манжетки, и в то же время валиномицин растворим в липидной фазе мембраны, так как снаружи его молекула неполярна. Ионы калия удерживаются внутри молекулы за счет сил ион-дипольного взаимодействия. Молекулы валиномицина, оказавшиеся у поверхности мембраны, могут захватывать из окружающего раствора ионы калия. Диффундируя в мембране, молекулы переносят калий через мембрану и отдают ионы в раствор по другую сторону мембраны. Таким образом и происходит челночный перенос ионов калия через мембрану.

Отличия облегченной диффузии от простой:

1) перенос ионов с участием переносчика происходит значительно быстрее по сравнению со свободной диффузией;

2) облегченная диффузия обладает свойством насыщения - при увеличении концентрации с одной стороны мембраны плотность потока вещества возрастает лишь до некоторого предела, когда все молекулы переносчика уже заняты;

3) при облегченной диффузии наблюдается конкуренция переносимых веществ в тех случаях, когда одним переносчиком переносятся разные вещества; при этом одни вещества переносятся лучше, чем другие, и добавление одних веществ затрудняет транспорт других;

4) есть вещества, блокирующие облегченную диффузию, они образуют прочный комплекс с молекулами переносчика, препятствуя дальнейшему переносу.

Разновидностью облегченной диффузии является транспорт с помощью неподвижных молекул переносчиков, фиксированных определенным образом поперек мембраны. При этом молекула переносимого вещества передается от одной молекулы переносчика к другой по типу эстафеты.

Осмос - преимущественное движение молекул воды через полупроницаемые мембраны (непроницаемые для растворенного вещества и проницаемые для воды) из мест с меньшей концентрацией растворенного вещества в места с большей концентрацией. Осмос, по сути, диффузия воды из мест с ее большей концентрацией в места с меньшей концентрацией. Осмос играет большую роль во многих биологических явлениях. Явление осмоса обусловливает гемолиз эритроцитов в гипотонических растворах и тургор в растениях.

Активный транспорт веществ через биологические мембраны. Опыт Усинга

Активный транспорт веществ через биологические мембраны имеет огромное значение. За счет активного транспорта в организме создаются разности концентраций, разности электрических потенциалов, давления, поддерживающие жизненные процессы, то есть с точки зрения термодинамики активный перенос удерживает организм в неравновесном состоянии, поддерживает жизнь, так как равновесие - это смерть организма. Существование активного транспорта веществ через биологические мембраны впервые было доказано в опытах Усинга (1949 год) на примере переноса ионов натрия через кожу лягушки. Опыт весьма поучителен и заслуживает подробного рассмотрения.

Экспериментальная камера Усинга, заполненная нормальным раствором Рингера, была разделена на две части свежеизолированной кожей лягушки. В опыте исследовали однонаправленные потоки ионов натрия через кожу лягушки в прямом и обратном направлениях.

Из уравнения, описывающего пассивный транспорт (2), следует уравнение Усинга-Теорелла для отношения этих потоков в случае пассивного транспорта

На изолированной коже лягушки, разделяющей раствор Рингера, возникает разность потенциалов jвн - jнар (внутренняя сторона кожи положительна по отношению к наружной). В установке имелось специальное устройство: электрическая батарея с потенциометром - делителем напряжения, с помощью которых компенсировалась разность потенциалов на коже лягушки: Dj = jвн - jнар = 0, что контролировалось вольтметром. Кроме того, концентрация ионов натрия с внешней и внутренней сторон поддерживалась одинаковой. При этих условиях, как видно из уравнения Усинга-Теорелла,

jм, вн = jм, нар .

Суммарный поток ионов через мембрану должен был бы отсутствовать. Его наличие свидетельствовало бы о переносе ионов против перепада концентрации, то есть об активном переносе. Для доказательства этого в левую часть экспериментальной камеры были добавлены радиоактивные изотопы 22Na, а в правую - 24Na. 22Na распадается с излучением жестких g-квантов, излучение 24Na фиксировалось по мягким b-лучам. Было показано, что поток 22Na больше потока 24Na. О наличии тока в цепи свидетельствовали и показания миллиамперметра.

Эти экспериментальные данные неопровержимо свидетельствовали о том, что перенос ионов натрия через кожу лягушки не подчиняется уравнению пассивного транспорта. Более того, оказалось, что суммарный поток ионов натрия исключительно чувствителен к факторам, влияющим на энергетический обмен в клетках кожи: наличию кислорода, действию разобщителей окислительного фосфорилирования, действию низких температур. Следовательно, речь должна идти об особом способе переноса ионов, названном впоследствии активным. Позднее было установлено, что активный перенос ионов натрия в коже лягушки обеспечивается ионными насосами, локализованными в клетках базального эпителия. Работа насоса блокировалась специфическим ингибитором оуабаином.

Дальнейшие исследования показали, что в биологических мембранах имеется несколько разновидностей ионных насосов, работающих за счет свободной энергии гидролиза АТФ, - специальные системы интегральных белков (транспортные АТФазы). В настоящее время известны три типа электрогенных ионных насосов. Перенос ионов транспортными АТФазами происходит вследствие сопряжения процессов переноса с химическими реакциями за счет энергии метаболизма клеток.

При работе K+-Na+-АТФазы за счет энергии макроэргических связей, освобождающейся при гидролизе каждой молекулы АТФ, в клетку переносятся два иона калия и одновременно из клетки выкачиваются три иона натрия. Таким образом, создаются повышенная по сравнению с межклеточной средой концентрация в клетке ионов калия и пониженная концентрация ионов натрия, что имеет огромное физиологическое значение. Са-АТФаза обеспечивает активный перенос двух ионов кальция, протонная помпа - двух протонов на одну молекулу АТФ.

Молекулярный механизм работы ионных АТФаз до конца не изучен. Тем не менее прослеживаются основные этапы этого сложного ферментативного процесса. В случае К-Na-АТФазы (обозначим ее для краткости Е) насчитываются семь этапов переноса ионов, сопряженных с гидролизом АТФ. Обозначения Е1 и Е2 соответствуют расположению активного центра фермента на внутренней и внешней поверхности мембраны соответственно (аденозиндифосфат - АДФ, неорганический фосфат - P, звездочкой обозначен активный комплекс):

1) E + АТФ E*АТФ,

2) E*АТФ + 3Na [E*АТФ]*Na3 ,

3) [E*АТФ]*Na3 [Е1 ~ P]*Na3 + АДФ,

4) [Е1 ~ P]*Na3 [Е2 ~ P]*Na3 ,

5) [Е2 ~ P]*Na3 + 2K [Е2 - P]*K2 + 3Na,

6) [Е2 - P]*K2 [Е1 - P]*K2 ,

7) [Е1 - P]* E + P + 2K.

На схеме видно, что ключевыми этапами работы фермента являются: 1) образование комплекса фермента с АТФ на внутренней поверхности мембраны (эта реакция активируется ионами магния); 2) связывание комплексом трех ионов натрия; 3) фосфорилирование фермента с образованием аденозиндифосфата; 4) переворот (флип-флоп) фермента внутри мембраны ;5) реакция ионного обмена натрия на калий, происходящая на внешней поверхности мембраны; 6) обратный переворот ферментного комплекса с переносом ионов калия внутрь клетки и 7) возвращение фермента в исходное состояние с освобождением ионов калия и неорганического фосфата (Р). Таким образом, за полный цикл происходят выброс из клетки трех ионов натрия, обогащение цитоплазмы двумя ионами калия и гидролиз одной молекулы АТФ.

Вторичный активный транспорт ионов

Помимо ионных насосов, рассмотренных выше, известны сходные системы, в которых накопление веществ сопряжено не с гидролизом АТФ, а с работой окислительно-восстановительных ферментов или фотосинтезом. Транспорт веществ в этом случае является вторичным, опосредованным мембранным потенциалом и/или градиентом концентрации ионов при наличии в мембране специфических переносчиков. Такой механизм переноса получил название вторичного активного транспорта. Наиболее детально этот механизм рассмотрен Питером Митчелом (1966 год) в хемиосмотической теории окислительного фосфорилирования. В плазматических и субклеточных мембранах живых клеток возможно одновременное функционирование первичного и вторичного активного транспорта. Примером может служить внутренняя мембрана митохондрий. Ингибирование АТФазы в ней не лишает частицу способности накапливать вещества за счет вторичного активного транспорта. Такой способ накопления особенно важен для тех метаболитов, насосы для которых отсутствуют (сахара, аминокислоты).

В настоящее время достаточно глубоко исследованы три схемы вторичного активного транспорта. Для простоты рассмотрен транспорт одновалентных ионов с участием молекул-переносчиков. При этом подразумевается, что переносчик в нагруженном или ненагруженном состоянии одинаково хорошо пересекает мембрану. Источником энергии служит мембранный потенциал и/или градиент концентрации одного из ионов. Схемы показаны на рис. 5. Однонаправленный перенос иона в комплексе со специфическим переносчиком получил название унипорта. При этом через мембрану переносится заряд либо комплексом, если молекула переносчика электронейтральна, либо пустым переносчиком, если перенос обеспечивается заряженным переносчиком. Результатом переноса будет накопление ионов за счет снижения мембранного потенциала. Такой эффект наблюдается при накоплении ионов калия в присутствии валиномицина в энергизованных митохондриях.

Встречный перенос ионов с участием одноместной молекулы-переносчика получил название антипорта. Предполагается при этом, что молекула-переносчик образует прочный комплекс с каждым из переносимых ионов. Перенос осуществляется в два этапа: сначала один ион пересекает мембрану слева направо, затем второй ион - в обратном направлении. Мембранный потенциал при этом не меняется.Что же является движущей силой этого процесса? Очевидно, разность концентраций одного из переносимых ионов. Если исходно разность концентрации второго иона отсутствовала, то результатом переноса станет накопление второго иона за счет уменьшения разности концентраций первого. Классическим примером антипорта служит перенос через клеточную мембрану ионов калия и водорода с участием молекулы антибиотика нигерицина.

Совместный однонаправленный перенос ионов с участием двухместного переносчика называется симпортом. Предполагается, что в мембране могут находиться две электронейтральные частицы: переносчик в комплексе с катионом и анионом и пустой переносчик. Поскольку мембранный потенциал в такой схеме переноса не изменяется, то причиной переноса может быть разность концентраций одного из ионов. Считается, что по схеме симпорта осуществляется накопление клетками аминокислот. Калий-натриевый насос создает начальный градиент концентрации ионов натрия, которые затем по схеме симпорта способствуют накоплению аминокислот. Из схемы симпорта следует, что этот процесс должен сопровождаться значительным смещением осмотического равновесия, поскольку в одном цикле через мембрану переносятся две частицы в одном направлении.

В процессе жизнедеятельности границы клетки пересекают разнообразные вещества, потоки которых эффективно регулируются. С этой задачей справляется клеточная мембрана с встроенными в нее транспортными системами, включающими ионные насосы, систему молекул-переносчиков и высокоселективные ионные каналы.

Такое обилие систем переноса на первый взгляд кажется излишним, ведь работа только ионных насосов позволяет обеспечить характерные особенности биологического транспорта: высокую избирательность, перенос веществ против сил диффузии и электрического поля. Парадокс заключается, однако, в том, что количество потоков, подлежащих регулированию, бесконечно велико, в то время как насосов всего три. В этом случае особое значение приобретают механизмы ионного сопряжения, получившие название вторичного активного транспорта, в которых важную роль играют диффузионные процессы. Таким образом, сочетание активного транспорта веществ с явлениями диффузионного переноса в клеточной мембране - та основа, которая обеспечивает жизнедеятельность клетки.

ЛИПИДНЫЕ ПОРЫ

И ПРОНИЦАЕМОСТЬ МЕМБРАН

С точки зрения проницаемости липидные поры принципиально отличаются от белковых каналов своим происхождением и исключительной динамичностью. В то время как белковые каналы имеют строго определенные размеры, сохраняющиеся в течение всей жизни клетки, размеры липидных пор в процессе затекания варьируют в широких пределах. Однако эта изменчивость имеет предел. Если радиус поры меньше критического, то пора в процессе затекания должна пройти все промежуточные радиусы и достигнуть минимального размера. Вопрос о возможности полного затекания липидных пор остается открытым. Предполагается, что полному затягиванию поры препятствуют мощные силы гидратации, проявляющиеся при сближении стенок гидрофильных пор.

Липидные поры в отличие от белковых ионных каналов не обладают выраженной избирательностью, что коррелирует с их сравнительно большими исходными размерами. Ясно, однако, что в процессе затекания липидные поры могут достигать сколь угодно малых размеров, в том числе сравнимых с размерами белковых ионных каналов, что может приводить к перераспределению ионных токов в мембране , например при возбуждении. Известно далее, что после выключения стрессового воздействия бислойная липидная мембрана может вернуться в состояние с низкой проводимостью, что подразумевает достижение порами размера, недостаточного для прохождения гидратированных ионов. Таким образом, гидрофильные липидные поры универсальны в том отношении, что могут быть использованы клеткой для транспорта высокомолекулярных веществ, ионов и молекул воды.

Исследования проницаемости липидных пор развиваются в настоящее время в двух направлениях: в первом исследуются максимально большие поры , во втором, наоборот, - липидные поры минимального радиуса. В первом случае речь идет об электротрансфекции - способе введения в живые клетки или липосомы молекул ДНК с целью переноса и внутриклеточного введения чужеродного генетического материала. Оказалось, что внешнее электрическое поле высокой напряженности способствует проникновению гигантской молекулы ДНК внутрь мембранной частицы. Как видно из, максимальный размер критической поры соответствует жидкокристаллическому состоянию бислоя липидов при отсутствии внешнего электрического поля и равен 9 нм. Наложение внешнего электрического поля напряженностью 100 кВ/м понижает критический радиус поры до 1 нм за время 0,2 с. Поскольку при этом мембраны сохраняются, то размер липидных пор в них не превышает, очевидно, этого нижнего предела. Парадокс состоит в том, что эффективный диаметр статистического клубка ДНК, которая должна попасть внутрь частицы, достигает 2000 нм. Поистине задача про верблюда, проникающего сквозь игольное ушко. Поэтому очевидно, что молекула ДНК должна проникать через мембрану в виде расплетенной одиночной нити. Известно, что конец нити имеет диаметр 2 нм и таким образом только-только может войти в пору. Однако свободная диффузия нити ДНК в поре при этом вряд ли возможна. К сожалению, механизм этого явления до конца неясен. Предполагается, в частности, что молекула ДНК способна расширить пору и таким образом проскользнуть через мембрану. Проникновению ДНК могут способствовать дополнительные силы электрофореза и электроосмоса с учетом суммарного отрицательного заряда молекулы ДНК. Не исключено, что поры с фиксированными в них концами молекулы ДНК играют роль якоря, удерживающего молекулу в определенном месте у поверхности мембраны везикулы, а сам процесс переноса является разновидностью пиноцитоза. Исследование этого интересного с точки зрения проницаемости явления продолжается.

Второе направление исследования проницаемости мембран с участием липидных пор связано с трансмембранным переносом молекул и ионов воды. Известное в биологии явление высокой водной проницаемости клеточных мембран полностью воспроизводится на искусственных липидных бислоях, что подразумевает участие в этом процессе гидрофильных липидных пор . Большой интерес в этой связи представляют результаты опытов Эламрани и Блума с суспензией липосом из фосфатидной кислоты в температурной области фазового перехода липида из жидкокристаллического состояния в гель. Проницаемость бислоя для молекул воды измеряли в опытах с тяжелой водой, проницаемость для ионов воды - методом рН-скачка.Первое, что можно отметить, - это огромное различие между коэффициентом проницаемости липидного бислоя для гидратированных ионов (ион натрия) и молекул (ионов) воды. Это различие достигает девяти порядков. Столь значительное различие свидетельствует в пользу предположения о том, что в процессе затекания липидные поры могут достигать размера, недостаточного для прохождения гидратированных ионов, но доступного для прохождения более мелких частиц - молекул и ионов воды. Кроме того, фазовый переход мембранных липидов в гель-состояние сопровождается скачкообразным уменьшением коэффициента проницаемости для ионов и молекул воды. Отсюда следует, что в ходе фазового перехода из множества липидных пор отбираются те, радиус которых не превышает 2 нм. И наконец, обращают внимание количественное совпадение коэффициентов проницаемости бислойной мембраны для молекул и ионов воды, а также их одинаковая динамика при фазовом переходе. Естественно предположить, что молекулы и ионы воды пересекают мембрану одним и тем же путем. Этот результат позволяет некоторым ученым вернуться к известной гипотезе о том, что липидный бислой насыщен дефектами типа трансмембранных цепочек молекул структурированной воды. С точки зрения молекулярной организации структура молекул воды в этом случае идентична структуре льда. Молекулы воды связаны между собой водородными связями. Предполагается, что протоны могут передвигаться по системе межмолекулярных водородных связей. Можно думать, что такие льдоподобные цепочки воды возникают в липидном бислое в момент рождения или затекания липидных пор .

В пользу возможности протонной проводимости на границе раздела водной фазы с полярной частью фосфолипидного бислоя свидетельствуют данные о латеральной протонной проводимости на границе липидного бислоя с водой. Вдоль монослоя из фосфатидилэтаноламина создавался градиент рН и измерялась продольная скорость переноса протона путем регистрации флуоресценции меченого в полярной головке фосфолипида. Одновременно производили измерения поверхностного потенциала и поверхностного давления. Показано, что протон движется вдоль монослоя липида в том случае, если этот монослой организован и упорядочен. Скорость переноса значительно превышала скорость диффузии протонов в воде. Эффект был обнаружен в монослоях из большинства природных фосфолипидов. Полная дегидратация фосфолипидов в полярной области приводила к потере протонной проводимости. Авторы предполагают, что молекулы воды на границе раздела липид - раствор образуют четыре слоя: объемный слой раствора; слой гидратной воды, молекулы воды в котором непосредственно взаимодействуют с полярными группами молекулы липида; слой молекул, воды связанный водородной связью с молекулами липида на уровне карбонильной группы, и, наконец, трансмембранные водные мостики. В целом на поверхности липидного бислоя образуется сеть водородных связей, обеспечивающих быстрый перенос протонов. Предполагается при этом, что протоны, передвигающиеся в системе водородных связей на поверхности бислоя, не смешиваются с протонами объемного слоя воды. Таким образом, возможен мембранный обмен протонами между протонными каналами и протонными насосами минуя раствор электролита, омывающего мембрану. Кроме того, молекулы липида в кромке липидной поры способны, как показано в последнее время, участвовать в быстром флип-флоп обмене. В сочетании с латеральной миграцией протонов этот механизм также способствует эффективному трансмембранному переносу протонов.

ЗАКЛЮЧЕНИЕ

Основной вывод состоит в том, что стабильность липидного бислоя и клеточной мембраны , лишенной белкового каркаса, определяется липидными порами . Эти поры образуются в местах дефектов жидкокристаллической структуры липидного бислоя. Липидные поры возникают в результате тепловых флуктуаций поверхности бислоя, а также могут рождаться при мембранном стрессе, сопровождающем фазовый переход мембранных липидов, при электрическом пробое и осмотическом лизисе. Судьба мембраны в этих случаях будет зависеть вероятностным образом от того, будет ли липидная пора превышать некоторый критический размер или нет. В первом случае мембрана порвется, во втором случае ее структура сохранится. При сохранении стабильности мембран поры залечиваются, пробегая при этом все промежуточные значения радиусов. Минимальные радиусы липидных пор могут стать сравнимыми с размерами избирательных белковых каналов, регулирующих в норме ионную проницаемость клеточных мембран . На последних этапах затекания липидные поры могут превращаться в водные поры, доступные только для молекул и ионов воды.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита11:19:59 04 ноября 2021
.
.11:19:57 04 ноября 2021
.
.11:19:55 04 ноября 2021
.
.11:19:53 04 ноября 2021
.
.11:19:51 04 ноября 2021

Смотреть все комментарии (19)
Работы, похожие на Реферат: Транспорт веществ через биологические мембраны 2

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(294399)
Комментарии (4230)
Copyright © 2005 - 2024 BestReferat.ru / реклама на сайте