Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Наближене розв язування рівнянь графічне відокремлення коренів методи проб хорд і дотичних Д

Название: Наближене розв язування рівнянь графічне відокремлення коренів методи проб хорд і дотичних Д
Раздел: Рефераты по информатике
Тип: реферат Добавлен 18:50:19 20 января 2011 Похожие работы
Просмотров: 30 Комментариев: 20 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно     Скачать

Пошукова робота на тему:

Наближене розв’язування рівнянь: графічне відокремлення коренів, методи проб, хорд і дотичних. Дотична і нормаль до кривої.

П лан

· Дотична і нормаль до плоскої кривої

· Наближене розв’язування рівнянь

  • Графічне відокремлювання коренів
  • Методи проб, хорд і дотичних
  • Інтерполювання

ГЕОМЕТРИЧНІ ЗАСТОСУВАННЯ ДИФЕРЕНЦІАЛЬНОГО ЧИСЛЕННЯ.

НАБЛИЖЕНЕ РОЗВ’ЯЗУВАННЯ РІВНЯНЬ

1. Дотична і нормаль до плоскої кривої

Якщо є рівняння кривої, а точка є точка дотику, то рівняння дотичної має вигляд

, (7.1)

де .

Пряма, яка проходить через точку дотику перпендикулярно до дотичної, називається нормаллю до кривої. Використаємо умову перпендикулярності двох прямих, тоді для нормалі одержимо рівняння

. (7.2)

Приклади.

1. Скласти рівняння дотичної та нормалі до параболи в довільній її точці .

Р о з в ’ я з о к. Диференціюємо рівняння параболи: , звідки , тому .

Рівняння дотичної до параболи

;

рівняння нормалі до параболи

.

2. Скласти рівняння дотичної та нормалі до циклоїди

.

Р о з в ’ я з о к. Обчислюємо

.

Рівняння дотичної до циклоїди в точці , що відповідає значенню параметра :

(дотична);

(нормаль).

Дотична і нормаль кривої, побудовані в довільній її точці , в перетині з віссю утворюють прямокутний трикутник (рис. 7.1).

Катети цього трикутника і та відрізки і часто використовуються в різних питаннях геометрії і дістали спеціальні позначення і назви:

- довжина дотичної;

- довжина нормалі;

- піддотична;

-піднормаль.

Рис.7.1

Ці відрізки можуть бути виражені через значення та в точці :

, або ;

, або ;

, або ;

, або .

Враховуючи, що як , так і можуть мати від’ємні значення, одержані формули перепишемо:

. (7.3)

2. Наближене розв’язування рівнянь

Розглянемо рівняння і нехай - його дійсний корінь, тобто Геометрично рівність означає, що графік функції проходить через точку осі Далі ми будемо розв’язувати задачу про знаходження з наперед заданою точністю наближеного значення кореня рівняння Спочатку розглянемо питання про відокремлення коренів рівняння.

Корінь рівняння відокремлений, якщо знайдено відрізок ( позначимо його ), в якому, крім , немає інших коренів цього рівняння.

Задача відокремлення коренів рівняння розв’язується просто, якщо побудова графіка функції не є важкою. Дійсно, маючи графік функції , легко виділити відрізки, в кожному із яких знаходиться лише один корінь розглядуваного рівняння, або, що те саме, виділити відрізки, на кожному із яких є лише одна точка перетину кривої з віссю

Відділити корені рівняння при умові, що - диференційована функція, можна не лише графічно. Нехай на кінцях деякого відрізка функція має значення різних знаків. Тоді за властивістю неперервних функцій ця функція на інтервалі по меншій мірі один раз обертається в нуль, тобто рівняння має по меншій мірі один корінь.

Якщо похідна зберігає знак на відрізку , то внаслідок монотонності функції рівняння на інтервалі має єдиний корінь.

У цьому випадку числа та є наближеними значеннями кореня відповідно з нестачею і з надлишком. Ці інтервали можна звужувати, тоді границі їх будуть давати все точніші наближення для коренів рівняння.

Нехай корінь рівняння відокремлений, тобто є відрізок , на якому, крім , немає інших коренів цього рівняння.

Відшукаємо значення з будь-якою точністю за таких допущень: функція має на відрізку неперервні похідні до другого порядку включно і, крім того, похідні і зберігають знаки на цьому відрізку. Із цих умов випливає, що - монотонна функція на відрізку , яка на кінцях має різні знаки, а також, що крива опукла або вгнута (рис.7.2).

Рис.7.2

Уточнимо корінь рівняння способами хорд і дотичних. Зміст цих способів полягає в тому, що точка перетину кривої з віссю замінюється точкою перетину з віссю відповідно хорди ( в методі хорд ) і дотичної (в методі дотичних ).

7.2.1.Метод хорд

Напишемо рівняння хорди :

і покладемо в нього . Знайдемо - абсцису точки перетину

хорди з віссю :

Із умов, яким задовольняє функція , випливає, що Позначимо через точку кривої , відповідну (рис.7.3).

Розглянемо хорду та знайдемо її точку перетину з віссю

при цьому

Продовжуючи цей процес, означимо послідовність :

Послідовність - монотонна, обмежена і збіжна. Можна довести, що .

Абсолютна похибка -го наближення оцінюється за нерівністю

де - найменше значення на відрізку Тому можна зупинити процес тоді, коли стане менше допустимої похибки результату.

3 . Метод дотичних

Проведемо дотичну до кривої в точці (рис.7.4 ).

Саме в цій точці збігаються знаки функції та (дотична

до кривої в точці може перетнути вісь за межами відрізка

).

Рис.7.3 Рис.7.4

Знайдемо точку перетину цієї дотичної з віссю . Рівняння дотичної запишемо у вигляді:

.

Покладемо в цьому рівнянні . Знайдемо - абсцису точки перетину дотичної з віссю :

,

Значенню відповідає точка кривої . Абсциса точки перетину дотичної до кривої в точці з віссю буде

.

Продовжуючи цей процес, знайдемо

.

Послідовність - монотонна і обмежена. Можна довести, що .

Абсолютна похибка -го наближення може бути оцінена за нерівністю

.

Якщо потрібно обчислити корінь рівняння з

абсолютною похибкою, не більшою від заданого числа то закінчуємо обчислення при

.

Зауваження. На практиці часто використовують обидва методи. Одним методом одержують наближення шуканого кореня з нестачею, а другим – з надлишком.

Яким саме методом одержується наближення кореня з нестачею, а яким – з надлишком, залежить від функції . Якщо врахуємо, що кожна послідовність та - монотонна, то легко знаходити корінь з заданою точністю, оскільки знаки, що збігаються в наближеннях та (в наближеннях та ) є правильними.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита11:17:39 04 ноября 2021
.
.11:17:36 04 ноября 2021
.
.11:17:33 04 ноября 2021
.
.11:17:31 04 ноября 2021
.
.11:17:29 04 ноября 2021

Смотреть все комментарии (20)
Работы, похожие на Реферат: Наближене розв язування рівнянь графічне відокремлення коренів методи проб хорд і дотичних Д

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(294402)
Комментарии (4230)
Copyright © 2005 - 2024 BestReferat.ru / реклама на сайте