Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Основные элементарные функции, их свойства и графики

Название: Основные элементарные функции, их свойства и графики
Раздел: Рефераты по математике
Тип: реферат Добавлен 02:13:21 01 июля 2011 Похожие работы
Просмотров: 13288 Комментариев: 20 Оценило: 17 человек Средний балл: 4.2 Оценка: 4     Скачать

Национальный научно-исследовательский университет

-ИрГТУ-

Кафедра прикладной геологии

Реферат по высшей математике

На тему: «Основные элементарные функции,

их свойства и графики»

Выполнил:

.

Проверил:

преподаватель

Коваленко Е.В.

Иркутск 2010

Содержание:

Показательные функции:- 3 -

Степенные функции:- 3 -

Логарифмические функции:- 3 -

Тригонометрические функции:- 3 -

Обратные тригонометрические функции:- 3 -

Список использованной литературы:- 3 -

Список рисунков:- 3 -

Показательные функции:

Определение. Функция, заданная формулой у=ах (где а>0, а≠1), называется показательной функцией с основанием а.

Сформулируем основные свойства показательной функции :

1. Область определения — множество (R) всех действительных чисел.

2. Область значений — множество (R+) всех положительных действительных чисел.

3. При а > 1 функция возрастает на всей числовой прямой; при 0<а<1 функция убывает.

4. Является функцией общего вида.

Рис. 1 График функции , на интервале xÎ [-3;3]

Рис. 2 График функции , на интервале xÎ [-3;3]

Степенные функции:

Функция вида у(х)=хn , где n – число ÎR, называется степенной функцией. Число n может принимать раличные значения: как целые, так и дробные, как четные, так и нечетные. В зависимости от этого, степенная функция будет иметь разный вид. Рассмотрим частные случаи, которые являются степенными функциями и отражают основные свойства данного вида кривых в следующем порядке: степенная функция у=х² (функция с четным показателем степени – парабола), степенная функция у=х³ (функция с нечетным показателем степени – кубическая парабола) и функция у=√х (х в степени ½) (функция с дробным показателем степени), функция с отрицательным целым показателем (гипербола).

Степенная функция у=х²

1. D(x)=R – функция определена на все числовой оси;

2. E(y)=[0;∞) - функция принимает положительные значения на всей области определения;

3. При х=0 у=0 - функция проходит через начало координат O(0;0).

4. Функция убывает на промежутке (-∞;0] и возрастает на промежутке [0;∞).

5. Функция является четной (симметрична относительно оси Оу).

В зависимости от числового множителя, стоящего перед х², функция может быть уже/шире и направлена вверх/вниз.

Рис. 3 График функции , на интервале xÎ [-3;3]

Степенная функция у=х³

1. График функции у=х³ называется кубической параболой. Степенная функция у=х³ обладает следующими свойствами:

2. D(x)=R – функция определена на все числовой оси;

3. E(y)=(-∞;∞) – функция принимает все значения на своей области определения;

4. При х=0 у=0 – функция проходит через начало координат O(0;0).

5. Функция возрастает на всей области определения.

6. Функция является нечетной (симметрична относительно начала координат).

Рис. 4 График функции , на интервале xÎ [-3;3]

В зависимости от числового множителя, стоящего перед х³, функция может быть крутой/пологой и возрастать/убывать.

Степенная функция с целым отрицательным показателем:

Если показатель степени n является нечетным, то график такой степенной функции называется гиперболой. Степенная функция с целым отрицательным показателем степени обладает следующими свойствами:

1. D(x)=(-∞;0)U(0;∞) для любого n;

2. E(y)=(-∞;0)U(0;∞), если n – нечетное число; E(y)=(0;∞), если n – четное число;

3. Функция убывает на всей области определения, если n – нечетное число; функция возрастает на промежутке (-∞;0) и убывает на промежутке (0;∞), если n – четное число.

4. Функция является нечетной (симметрична относительно начала координат), если n – нечетное число; функция является четной, если n – четное число.

5. Функция проходит через точки (1;1) и (-1;-1), если n – нечетное число и через точки (1;1) и (-1;1), если n – четное число.

Рис. 5 График функции , на интервале xÎ [-3;3]

Степенная функция с дробным показателем

Степенная функция с дробным показателем вида (картинка) имеет график функции, изображенный на рисунке. Степенная функция с дробным показателем степени обладает следующими свойствами: (картинка)

1. D(x) ÎR, если n – нечетное число и D(x)=[0;∞), если n – четное число ;

2. E(y) Î (-∞;0)U(0;∞), если n – нечетное число; E(y)=[0;∞), если n – четное число;

3. Функция возрастает на всей области определения для любого числа n.

4. Функция проходит через начало координат в любом случае.

Рис. 6 График функции , на интервале xÎ [0;3]

Рис. 7 График функции , на интервале xÎ [0;5]

Рис. 8 График функции , на интервале xÎ [-3;3]

Логарифмические функции:

Логарифмическая функция у = loga x обладает следующими свойствами :

1. Область определения D(x)Î (0; + ∞).

2. Область значений E(y) Î ( - ∞; + ∞)

3. Функция ни четная, ни нечетная (общего вида).

4. Функция возрастает на промежутке (0; + ∞) при a > 1, убывает на (0; + ∞) при 0 < а < 1.

График функции у = loga x может быть получен из графика функции у = ах с помощью преобразования симметрии относительно прямой у = х. На рисунке 9 построен график логарифмической функции для а > 1, а на рисунке 10 - для 0 < a < 1.

Рис. 9 График функции ; на интервале xÎ [0;5]

Рис. 10 График функции ; на интервале xÎ [0;5]

Тригонометрические функции:

Функции y = sin х, у = cos х, у = tg х, у = ctg х называют тригонометрическими функциями.

Функции у = sin х, у = tg х, у = ctg х нечетные, а функция у = соs х четная.

Функция y = sin (х).

1. Область определения D(x) ÎR.

2. Область значений E(y) Î [ - 1; 1].

3. Функция периодическая; основной период равен 2π.

4. Функция нечетная .

5. Функция возрастает на промежутках [ -π/2 + 2πn; π/2 + 2πn] и убывает на промежутках [ π/2 + 2πn; 3π/2 + 2πn], n Î Z.

График функции у = sin (х) изображен на рисунке 11.

Рис. 11 График функции ; на интервале xÎ [-2;2]

Функция y = cos(х).

1. Область определения D(x) ÎR.

2. Область значений E(y) Î [ - 1; 1].

3. Функция периодическая с основным периодом 2π.

4. Функция четная.

5. Функция убывает на промежутках [2πn; π+ 2πn] и возрастает на промежутках [-π+ 2πn; 2πn], nπZ.

График функции у = соs (х) изображен на рисунке 12.

Рис. 12 График функции ; на интервале xÎ [-2;2]

Функция y = tg х.

1. Область определения: D(x) Ï π/2 + πk, kÎZ.

2. Область значений E(y) Î (- ∞; + ∞)

3. π- основной период функции.

4. Функция нечетная.

5. Функция возрастает на промежутках ( -π/2 +πn;π/2 +πn).

График функции у = tg х изображен на рисунке 13.

Рис. 13 График функции ; на интервале xÎ (- ;)

Функция y = ctg х.

1. Область определения функции: D(x) Ï xπ/2 +πk, kÎZ.

2. Область значений функции E(y) Î (- ∞; + ∞).

3. Функция периодическая с основным периодом π.

4. Функция нечетная.

5. Функция у = ctg х убывает на промежутках (πn;π+πn).

График функции у = ctg х изображен на рисунке 14.

Рис. 14 График функции ; на интервале xÎ (-𝜋;)

Обратные тригонометрические функции:

Функции y = arcsin (х), у = arccos (х), у = arctg (х), у = arcctg (х) называют обратными тригонометрическими функциями.

Функция y = arcsin ( x ):

Свойства функции y = arcsin (x):

1. Область определения D(x)Î[−1;1]

2. Область значения E(y)Î [−π/2;π/2]

3. y=arcsin(x)- непрерывная строговозрастающая функция на D

5. График y = arcsin(x) симметричен графику y = sin(x) относительно линии y=x

6. y=arcsin(x) нечетная функция т.е. ∀x∈[−1;1] arcsin(−x)=−arcsin(х)

График функции y = arcsin (x) изображен на рисунке 15.

Рис. 15 График функции ; на интервале xÎ [- ;]

Функция y = arccos ( x ):

Свойства функции y = arccos (x):

1. Область определения D(x)Î[−1;1]

2. Область значения E(y)Î [0;π]

3. y=arccos(x)- непрерывная строговозрастающая функция на D

5. График y = arccos(x) симметричен графику y = cos(x) относительно линии y=x

6. y=arccos(x) функция общего вида

График функции y = arccos (x) изображен на рисунке 16.

Рис. 16 График функции ; на интервале xÎ [- ;]

Функция y = arctg ( x ):

Свойства функции y = arctg (x):

1. Область определения D(x)Î(- ∞;+∞)

2. Область значения E(y)Î [−π/2;π/2]

3. y=arctg (x)- непрерывная строговозрастающая функция на D

4. График y = arctg(x) симметричен графику y = tg(x) относительно линии y=x

5. y=arctg(x) нечетная функция.

График функции y = arctg (x) изображен на рисунке 17.

Рис. 17 График функции ; на интервале xÎ [- 5; 5]

Функция y = arc с tg ( x ):

Свойства функции y = arcсtg (x):

1. Область определения D(x)Î(- ∞;+∞)

2. Область значения E(y)Î [0 ; π]

3. y=arctg (x)- непрерывная строгоубывающая функция на D

4. График y = arcсtg(x) симметричен графику y = сtg(x) относительно линии y=x

5. y=arcctg(x) функция общего вида.

График функции y = arcctg (x) изображен на рисунке 18.

Рис. 18 График функции .

Список использованной литературы:

1. Алгебра и начала анализа, учебник для 10 класса общеобразовательных учреждений ; С.М. Никольский; М. Просвещение, 2001

2. Конспект лекции по высшей математике.

Некоторые изображения взяты из сети Интернет, графики функции построены в программе MicrosoftOfficeExel.

Список рисунков:

Рис. 1 График функции , на интервале xÎ [-3;3] ………………………- 3 -

Рис. 2 График функции , на интервале xÎ [-3;3]..…………………..- 3 -

Рис. 3 График функции , на интервале xÎ [-3;3] ………………………- 3 -

Рис. 4 График функции , на интервале xÎ [-3;3]………………………- 3 -

Рис. 5 График функции , на интервале xÎ [-3;3] …………………......- 3 -

Рис. 6 График функции , на интервале xÎ [0;3] ………………………..- 3 -

Рис. 7 График функции , на интервале xÎ [0;5] ……..………………..- 3 -

Рис. 8 График функции , на интервале xÎ [-3;3] …………………...…..- 3 -

Рис. 9 График функции ; на интервале xÎ [0;5]…………………...- 3 -

Рис. 10 График функции ; на интервале xÎ [0;5] …………..……...- 3 -

Рис. 11 График функции ; на интервале xÎ [-2;2] …………..- 3 -

Рис. 12 График функции ; на интервале xÎ [-2;2] …………..- 3 -

Рис. 13 График функции ; на интервале xÎ (- ;) ………..- 3 -

Рис. 14 График функции ; на интервале xÎ (-𝜋;) ……………- 3 -

Рис. 15 График функции ; на интервале xÎ [- ;] ………...- 3 -

Рис. 16 График функции ; на интервале xÎ [- ;] ………..- 3 -

Рис. 17 График функции ; на интервале xÎ [- 5; 5] ………….- 3 -

Рис. 18 График функции . ……………………………………..- 3 -

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита10:28:46 04 ноября 2021
.
.10:28:44 04 ноября 2021
.
.10:28:40 04 ноября 2021
.
.10:28:36 04 ноября 2021
.
.10:28:33 04 ноября 2021

Смотреть все комментарии (20)
Работы, похожие на Реферат: Основные элементарные функции, их свойства и графики

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(294402)
Комментарии (4230)
Copyright © 2005 - 2024 BestReferat.ru / реклама на сайте