Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Контрольная работа: Методика регрессионного анализа

Название: Методика регрессионного анализа
Раздел: Рефераты по математике
Тип: контрольная работа Добавлен 13:45:49 21 декабря 2010 Похожие работы
Просмотров: 38 Комментариев: 8 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно     Скачать

Министерство науки и образования Украины

Национальный технический университет Украины

"Киевский политехнический институт"

Радиотехнический факультет

Контрольная работа

По курсу: "Основы научных исследований"

Тема: "Методика регрессионного анализа"

Киев 2007

Нахождение коэффициентов регрессии модели полнофакторного эксперимента типа 23

Факторный эксперимент связан с варьированием одновременно всех факторов и проверкой достоверности результатов математико-статистическими методами. Факторы в эксперименте можно варьировать на бесконечном множестве уровней. При планировании эксперимента, чтобы получить результаты эксперимента в виде удобных для анализа полиномов, достаточно изменять факторы на двух, трех или пяти уровнях. Проведение экспериментов с многоуровневыми факторами затруднительно, поэтому они находят ограниченное применение в практике инженерного эксперимента.

Таблица 1

Номер

комбинации

Факторы Произведения факторов

Параметры оптимизации

(экспертная оценка)

Параметр

оптимизации

_ Ф И С
x0 x1 x2 x3 x1x2 x1x3 x2x3 x1x2x3 y1 y2 y3
1 1 -1 -1 -1 1 1 1 -1 0 0 0 0
2 1 1 -1 -1 -1 -1 1 1 31 28 47 35,3
3 1 -1 1 -1 -1 1 -1 1 12 9 10 10,3
4 1 1 1 -1 1 -1 -1 -1 60 52 64 58,7
5 1 -1 -1 1 1 -1 -1 1 1 3 2 2
6 1 1 -1 1 -1 1 -1 -1 54 59 50 54,3
7 1 -1 1 1 -1 -1 1 -1 41 41 40 40,7
8 1 1 1 1 1 1 1 1 91 92 90 91
Среднее значение 24,8

Модель для ПФЭ типа выглядит следующим образом:


Коэффициенты уравнения регрессии по методу наименьших квадратов в матричной форме определяем следующим образом [1, с. 53-55]:

Выражение - квадратная симметричная матрица – называется матрицей системы нормальных уравнений, или информационной матрицей (матрицей Фишера); – ковариационная матрица, или матрица дисперсий ковариаций.

Ковариация показывает величину статистической взаимосвязи между эффектами модели xi и xj :

Также коэффициенты ковариаций можно определить из ковариационной матрицы:

Из матрицы видно, что коэффициенты ковариаций каждого эффекта с каждым равны нулю, отсюда делаем вывод, что коэффициенты уравнения регрессии не коррелированны между собой.

Проверка многофакторных статистических моделей по основными критериям качества

Проверка на статистическую значимость получаемой математической модели [1, с. 93-94]

Проводиться проверка статистической гипотезы о силе влияния факторов плана эксперимента на фоне случайной изменчивости повторных опытов:

Где – среднее значения результатов опытов в u -той строке матрицы результатов; – среднее значение по всем результатам опытов; - результат в u -той строке l -го повторного опыта; (n – количество повторных опытов (2))

По таблице (приложение 3) определяем 3,73

Поскольку (53,935>3,73), то делаем положительный вывод о целесообразности получения математической модели.

Проверки предпосылок о свойствах случайных ошибок входящие в результаты экспериментов [1, с. 93]

При равномерном дублировании опытов nu = n = const (в нашем случае n = 2). Проверка однородностиряда дисперсий производиться с использованием G -критерия Кохрена:


- вычисляется по формуле:

Число степеней свободы, которыми обладает каждая из дисперсий: n – 1 = 1;

Количество независимых оценок дисперсий: N = 8

По указанным индексам находим значение из таблицы "Критерий Кохрена" (приложение 1)

Так как то делаем вывод, что дисперсии однородны и могут быть усреднены:

Проверка на адекватность полученной модели произвольным результатам экспериментов в пределах принятых изменений факторов [1, с. 94-95]

Проверка коэффициентов уравнения регрессии на статистическую значимость проводиться с помощью t -критерия:


Для значения α = 0,05, получим α/2 = 0,025 и значение t-критерия Стьюдента равно . Поскольку в матрице дисперсий-ковариаций не нулевые только диагональные элементы и равны между собой (), то все доверительные интервалы равны между собой:

Теперь проверим все коэффициенты на статистическую значимость исходя из условия: если – то коэффициент статистически значим, если – то коэффициент статистически не значим.

коэффициент b0 b1 b2 b3 b4 b5 b6 b7
36,542 23,292 13,625 10,458 1,375 2,375 5,208 1,875
Статистически значим + + + + - + + -

Таким образом мы получили, что коэффициенты b 4 и b 7 – статически не значимы, поэтому мы не будем вносить их в нашу модель. И окончательный вид модели будет таким:

Число = 6 – количество эффектов, которые вошли в структуру модели, то есть статистически значимые.

Значения откликов, полученных с помощью последней модели:

Отклик y1 y2 y3 y4 y5 y6 y7 y8
-3.25 38.584 13.584 55.418 2.5 53.834 40.166 91.5
3.25 3.251 3.251 3.249 0.5 0.499 0.501 0.5

Проверка модели на адекватность производиться с использованием F -критерия Фишера:

Где – числа степеней свободы для и :

Просчитаем экспериментальное значение:

По таблицам значения критерия Фишера (приложения 3) для q = 0,05 находим:

Так как выполняется условие значит модель адекватна.

Так как у нас , то нет необходимости определять значимость обратного отношения дисперсий.

Проверка на информативность [1, с. 97-99]

Коэффициент множественной корреляции R определяется по формуле:

Посчитанное значение R = 0,997 которое очень близко к единице.

Гипотезу о значимости множественного коэффициента корреляции проверяют по F -критерию:

Где – суммы квадратов отклонений – связанная с коэффициентом модели и остаточная; – числа степеней свободы для и .

В нашем случае:

По таблицам значения критерия Фишера для q = 0,05 находим:

Поскольку , то гипотеза о статистической незначимости R не принимается – это значит, что коэффициент множественной корреляции R является статистически значимым.

Проверка на устойчивость коэффициентов математической модели к случайным составляющим в исходной информации [1, с. 99-101]

Коэффициенты математической модели должны быть устойчивы к малым случайным изменениям в исходных данных, полученных в процессе эксперимента. Для количественно показателя устойчивости коэффициентов математической модели будем использовать меру обусловленности матрицы по Нейману-Голдстейну.

Для определения меры обусловленности по Нейману-Голдстейну P необходимо найти собственные числа для матрицы Фишера , решая уравнение:

Где – собственные числа для информационной матрицы Фишера

Поскольку коэффициенты b 4 и b 7 статистически незначимы, тога соответствующие столбцы матрицы X отбрасываются и размер матрицы становится , размер обратной матрицы - , а размер матрицы Фишера - :

Так как все эффекты в матрице Фишера ортогональны друг другу и нормированы, то:


Находят – максимальное и минимальное собственное число для информационной матрицы Фишера :

Мера обусловленности по Нейману-Голдстейну:

Другая мера обусловленности матрицы обозначается латинским сокращением cond :

- обозначение нормы матрицы. При этом предполагается, что матрица невырождена.

Известны несколько видов норм для матрицы А . Каждой из векторных норм соответствует своя подчиненная норма матрицы. Будем использовать следующую форму:

что означает выбор по всем столбцам j максимальной суммы абсолютных значений элементов по строкам i (m – число строк матрицы А ).

Так как все эффекты в расширенной матрице X ортогональны друг другу, то:


Для матрицы каждая по столбцам . Для матрицы каждая по столбцам .

Число обусловленности в этом случае будет:

Что подтверждает результат, полученный предыдущим методом.

Проверка фактической эффективности извлечения полезной информации из исходных данных [1, с. 101-102]

Косвенным показателем эффективности может быть число обусловленности cond для полученной модели. Так как значит эффективность можно считать хорошей.

Проверка правильности описания полученной математической модели по всей области моделирования [1, с. 102]

Полученную математическую модель желательно проверить по контрольной выборке. С использованием ПС ПРИАМ можно построить трехмерное изображение поверхности отклика, и проанализировать полученную поверхность, сравнивая минимальные и максимальные расчетные значения с допустимыми физическими значениями отклика. Возможен также поиск минимума и максимума по модели с использованием ЛПτ равномерно распределенных последовательностей и сравнения с физически возможными значениями отклика.

Оценка семантичности по полученным коэффициентам математической модели [1, с. 102-103]

Семантичность достигается, если эффекты статистической модели ортогональны друг другу, нормированы и план эксперимента равномерный. Выбор структуры модели должен быть проведен с использованием алгоритма RASTA3 и ПС ПРИАМ.

В нашем случае все эффекты полученной модели ортогональны друг другу и нормированы, план эксперимента мы выбрали равномерный, следовательно семантичность достигается.

Проверка свойств остатков [1, с. 103, 364-366]

Анализ основных графиков остатков

Общая оценка свойств полученной математической модели и возможностей ее использования для достижения поставленной цени

Из вышеприведенных расчетов и проверок можно сделать вывод, что данная математическая модель является адекватной для ее использования в поставленных задачах.

Литература

1. Рядченко С.Г. Устойчивые методы оценивания статистических моделей. Монография. – К.: ПП "Санспарель", 2005. – 504 с.

2. Большов Л.Н., Смирнов Н.В. Таблицы математической статистики

Приложения

1. Значение критерия Кохрена G1- q для q = 0,05. Все значения G1- q меньше единицы, поэтому в таблице приведены лишь знаки, следующие после запятой.

2. Значения критерия Стьюдента (t - критерия)


3. Значения критерия Фишера F1- q для q = 0,05

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Мне с моими работами постоянно помогают на FAST-REFERAT.RU - можете просто зайти узнать стоимость, никто вас ни к чему не обязывает, там впринципе всё могут сделать, вне зависимости от уровня сложности) у меня просто парень электронщик там какой то, тоже там бывает заказывает))
FAST-REFERAT.RU12:32:47 07 декабря 2018
Спасибо, Оксаночка, за совет))) Заказал курсач, отчет по практике, 2 реферата и дипломную на REFERAT.GQ , все сдал на отлично, и нервы не пришлось тратить)
Алексей22:13:37 15 июля 2018Оценка: 5 - Отлично
Я обычно любые готовые работы покупаю на сайте shop-referat.tk , и свои все там же на продажу выставляю, неплохой доп.заработок. А если там не нахожу то уже на referat.gq заказываю и мне быстро делают.
Оксана17:10:17 11 июня 2018Оценка: 5 - Отлично
Хватит париться. На сайте REFERAT.GQ вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую.
Студент02:52:42 10 июня 2018
Как заработать в интернете на halyava.125mb.com
Duke Nukem11:31:01 18 октября 2017

Смотреть все комментарии (8)
Работы, похожие на Контрольная работа: Методика регрессионного анализа

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(294402)
Комментарии (4230)
Copyright © 2005 - 2024 BestReferat.ru / реклама на сайте