Министерство образования Республики Беларусь
Учреждение образования Гомельский государственный
университет имени Франциска Скорины
Математический факультет
Кафедра Дифференциальных уравнений
Курсовая работа
«Системы, эквивалентные системам с известным типом точек покоя»
Гомель 2005
Реферат
Курсовая работа состоит из 14 страниц, 2-х источников.
Ключевые слова: вложимая система, с известным типом точек покоя, первый интеграл дифференциальной системы, отражающая функция, класс систем эквивалентных системе с известным типом точек покоя, непрерывно дифференцируемая функция.
Целью курсовой работы является исследование системы с известным типом точек покоя, нахождение первого интеграла системы, применение теоремы об эквивалентности дифференциальных систем.
Содержание
Введение
Определение вложимой системы. Условия вложимости
Общее решение системы
Нахождение первого интеграла дифференциальной системы и условия его существования
Отражающая функция
Применение теоремы об эквивалентности дифференциальных систем
Заключение
Список использованных источников
Введение
В курсовой работе рассматривается вложимая система с изаестным типом точек покоя. Как известно система является вложимой, если любая компонента этой системы вложима, т.е. система вложима тогда и только тогда, когда множество её решений является подмножеством множества решений некоторой линейной стационарной системы.
В 1–2 м пунктах рассматривается вложимая система, с известным типом точек покоя. Далее проверяем являются ли x и y общим решением нашей системы уравнений.
Во 3-м мы находим первый интеграл системы и проверяем выполнение тождества.
В 4-м пункте применяем теорему об эквивалентности дифференциальных систем.
1. Определение вложимой системы. Условия вложимости
Рассмотрим дифференциальную систему
  D. (1)
Будем называть i-ю компоненту x системы (1) вложимой, если для любого решения x(t)=(x (t),…, x (t)), t , этой системы функция x t , является квазимногочленом. Таким образом i-я компонента системы (1) вложима тогда и только тогда, когда для каждого решения x(t) этой системы существует линейное стационарное уравнение вида

 , (2)
для которого является решением.
Вообще говоря, порядок и коэффициенты уравнения (2) зависят от выбора решения . В частном случае, когда компонента любого решения системы (1) является одновременно и решением некоторого, общего для всех решений уравнения (2), компоненту системы (1) будем называть сильно вложимой в уравнение (2).
Забиваем Сайты В ТОП КУВАЛДОЙ - Уникальные возможности от SeoHammer
Каждая ссылка анализируется по трем пакетам оценки: SEO, Трафик и SMM.
SeoHammer делает продвижение сайта прозрачным и простым занятием.
Ссылки, вечные ссылки, статьи, упоминания, пресс-релизы - используйте по максимуму потенциал SeoHammer для продвижения вашего сайта.
Что умеет делать SeoHammer
— Продвижение в один клик, интеллектуальный подбор запросов, покупка самых лучших ссылок с высокой степенью качества у лучших бирж ссылок.
— Регулярная проверка качества ссылок по более чем 100 показателям и ежедневный пересчет показателей качества проекта.
— Все известные форматы ссылок: арендные ссылки, вечные ссылки, публикации (упоминания, мнения, отзывы, статьи, пресс-релизы).
— SeoHammer покажет, где рост или падение, а также запросы, на которые нужно обратить внимание.
SeoHammer еще предоставляет технологию Буст, она ускоряет продвижение в десятки раз,
а первые результаты появляются уже в течение первых 7 дней.
Зарегистрироваться и Начать продвижение
2. Общее решение системы
Рассмотрим вложимую систему
(1)
(b>0 и а-постоянные) с общим решением
, если с 0;
x=0, y=at+c , если с=0, где постоянные с, с , с связаны соотношением с (b+c +c )=a , имеет два центра в точках и .
Решение:
Подставим общее решение
в нашу систему (1) получим 
 
= =c(c cosct-c sinct)=
a- 
Для краткости распишем знаменатель и преобразуем
x +y +b=
 =
 
=a+c(c sinct+c cosct)
a- 

Получаем, что x и y являются общим решением системы.
3. Нахождение первого интеграла дифференциальной системы и условия его существования
Рассмотрим систему = f (t, x), x= (x ,…, x ), (t, x) (1)
с непрерывной в области D функцией f. Дифференцируемая функция U (t, x), заданная в некоторой подобласти G области D, называется первым интегралом системы
(1) в области G, если для любого решения x(t), t , системы (1), график которого расположен в Gфункция U (t, x(t)), t , постоянна, т.е. U (t, x(t)) зависит только от выбора решения x(t) и не зависит от t.
Пусть V (t, x), V:G R
, есть некоторая функция. Производной от функции V в силу системы (1) назовем функцию V V R,
определяемую равенством
V (t, x(t)) t .
Лемма 1.
Для любого решения x(t), t , системы (1), график которого расположен в G, имеет место тождество
V t .
Без доказательства.
Лемма 2.
Дифференцируемая функция U (t, x), U:G R
,
представляет собой первый интеграл системы (1) тогда и только тогда, когда производная U в силу системы (1) тождественно в G обращается в нуль.
Необходимость.
Пусть U (t, x) есть первый интеграл системы (1). Тогда для любого решения x(t) этой системы, применяя лемму 1
будем иметь тождества
U  
Откуда при t=t получим равенство U (t справедливое при всех значениях t и x(t ). Необходимость доказана.
Достаточность.
Пусть теперь U при всех (t, x) Тогда для любого решения x(t) системы (1) на основании леммы1
будем иметь тождества

а с ним и достаточность.
Из определения первого интеграла следует, что постоянная на G функция также является первым интегралом системы (1). Первый интеграл U (t, x) будем называть на G, если при всех (t, x) выполняется неравенство.

Функцию U(x) будем называть стационарным первым интегралом
системы (1), если она не зависит от t и является первым интегралом системы (1).
Найдем первый интеграл нашей системы:

Возведем в квадрат и выразим с

y




Положим , получим





Проверим, что функция  – это первый интеграл системы (1), т.е. проверим выполнение тождества (2)
Сервис онлайн-записи на собственном Telegram-боте
Попробуйте сервис онлайн-записи VisitTime на основе вашего собственного Telegram-бота:
— Разгрузит мастера, специалиста или компанию;
— Позволит гибко управлять расписанием и загрузкой;
— Разошлет оповещения о новых услугах или акциях;
— Позволит принять оплату на карту/кошелек/счет;
— Позволит записываться на групповые и персональные посещения;
— Поможет получить от клиента отзывы о визите к вам;
— Включает в себя сервис чаевых.
Для новых пользователей первый месяц бесплатно.
Зарегистрироваться в сервисе
Найдем производные по t, x, y
  
       
После выше сделанных преобразований получаем, что функция  – это первый интеграл системы (1),
2) Положим , т.е. ,
где , Q 
3) Проверим выполнение тождества:
(3), где 
Преобразуем (3).
[в нашем случае ] =    = [учитывая все сделанные обозначения] =
=
=
= [ввиду того, что которое в свою очередь как мы уже показали есть тождественный ноль]
Таким образом, тождество (3) истинное.

4. Отражающая функция
Определение.
Рассмотрим систему
(5)
cчитая, что правая часть которой непрерывна и имеет непрерывные частные производные по . Общее решение в форме Коши обозначено через ). Через обозначим интервал существования решения .
Пусть

Отражающей функцией
системы (5) назовём дифференцируемую функцию , определяемую формулой

Для отражающей функции справедливы свойства:
1.) для любого решения системы (5) верно тождество

2.) для отражающей функции F любой системы выполнены тождества

3) дифференцируемая функция будет отражающей функцией системы (5) тогда и только тогда, когда она удовлетворяет системе уравнений в частных производных

и начальному условию

5. Применение теоремы об эквивалентности дифференциальных систем
Получаем где - любая нечетная непрерывная функция.
Наряду с дифференциальной системой (1)
рассмотрим возмущенную систему (2), где - любая непрерывная нечетная функция. Известно по [3], что дифференциальная система   (3)
эквивалентна возмущенной системе
  (4), где непрерывная скалярная нечетная функция удовлетворяющая уравнению 
Так как выше уже показано, что функция где {есть первый интеграл} удовлетворяет этому уравнению, то справедлива следующая теорема.
Теорема1.
Система (1) эквивалентна системе (2) в смысле совпадения отражающей функции.
Так как система (1) имеет две особые точки, в каждой из которых находится центр, то и система (2) имеет центры в этих точках.
Заключение
В данной курсовой работе рассмотрена вложимая система с известным типом точек покоя, проверено удовлетворение общего решения нашей системе, найдены первый интеграл и проверено выполнение тождества, затем с помощью теоремы 1 доказана эквивалентность дифференциальных систем. Сформулированы определения вложимой системы, первого интеграла, отражающей функции и общие свойства отражающей функции. Cформулирована теорема при помощи которой мы доказали эквивалентность нашей системы с дифференциальной системой.
Список использованных источников
1. Мироненко В.И. Линейная зависимость функций вдоль решений дифференциальных уравнений. – Мн., Изд-во БГУ им. В.И. Ленина, 1981, 50 – 51 с.
2. Мироненко В.И. Отражающая функция и периодические решения дифференциальных уравнений. – Мн.: изд-во «Университетское», 1986, 11,17 – 19 с.
3. Мироненко В.В. Возмущения дифференциальных систем, не изменяющие временных симметрий. 2004 г.
|