Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Контрольная работа: Эконометрическое моделирование временных рядов

Название: Эконометрическое моделирование временных рядов
Раздел: Рефераты по математике
Тип: контрольная работа Добавлен 14:33:43 09 мая 2011 Похожие работы
Просмотров: 78 Комментариев: 16 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно     Скачать

Задача 1

За год на предприятии были выпущены семь партий продукции, для каждой из которых были определены издержки. Вычислить сумму издержек для следующего плана выпуска.

линейный экономический моделирование

Таблица 1.1.Данные о планируемом выпуске изделий

ед.прод. тыс.шт. затраты, руб.
2,2 ?
3,9 ?
5,5 ?

Таблица 1.2.Данные о выпущенных партиях

ед.прод.тыс.шт. затраты, руб.
1 30
2 70
4 150
3 100
5 170
6 215
8 290

Задача относится к разделу Парная регрессия, т.к. в ней даны один независимый параметр (единицы продукции, обозначим как х) и зависимый параметр (затраты, обозначим у).Прежде чем выбирать вид аппроксимирующей зависимости следует представить исходные данные графически.


Предполагаем линейную зависимость между х и у

Y=a+bx

Для определения параметров a,b используем метод наименьших квадратов

∑( y –(a+bx))² → min

Функция минимальна, если равны нулю ё, частные производные по параметрам т.е.:

y’a = ∑ (2( y-abx)(-1))=0

y’b = ∑ (2 ( y-a-bx)(-x))=0

или

na+b∑x =∑y,

a ∑x +b ∑x² =∑xy (1)

Система уравнений (1) однозначно определяет параметры a и b – это система двух уравнений с двумя неизвестными. Все остальные величины можно определить из исходных данных :

n- количество исходных точек,

∑x ∑y - суммарные значения параметров х и у по всем точкам,

∑xy - суммарное значение произведения параметров,

∑x²- суммарное значение квадрата величины х.

Рассчитаем коэффициенты линейного уравнения парной регрессии:

Σx^2 = (x^2) - cp –(xcp)^2

b= (cp(y*x) – cp(y)*cp(x))/(σx^2) (2)

a = cp( y) - b*cp(x)

Где индекс cp обозначает среднее значение данной величины, т.е. суммарное значение данной величины надо разделить на n.

Составим таблицу в редакторе Excel.

Таблица 1.3

n x y xy x^2
1 1 30 30 1
2 2 70 140 4
3 4 150 600 16
4 3 100 300 9
5 5 170 850 25
6 6 215 1290 36
7 8 290 2320 64
итого 29 1025 5530 155
среднее 4,14 146,43 790,00 22,14
σ² 4,98

Используя из табл. 1.3, получаем следующую систему уравнений:

7a+29b=1025

29a+155b=5530

Решаем систему уравнений методом последовательных исключений переменных или по формуле (2) и определяем коэффициенты

a= -6.127

b= 36.824

линейное уравнение запишем в виде

y=-6.127+36.824x (3)

Для варианта х=2,у=9 ,z =5 рассчитываем затраты

Таблица 1.4

ед.прод. тыс.шт. затраты, руб.
2,2 74,89
3,9 137,49
5,5 196,41

Используя пакет прикладных программ (ППП) статистическая функция ЛИНЕЙНАЯ и графические результаты (добавить линию тренда) проверим полученные результаты.

Таблица 1.5

36,824 -6,127
0,987 4,64432
0,9964 5,82708
1392 5
47266 169,775

Рис.1.2.

Кроме того, по найденному уравнению линейной регрессии (3) проведем расчет величин у, сравним их с заданными, т.е. рассчитаем отклонения и определим их суммарное отклонение, которое должно быть равно нулю. Результаты приведем в табл. 1.6.


Таблица 1.6

n x y xy y расч y-y расч
1 1 30 30 900 1 30,7 -0,7
2 2 70 140 4900 4 67,5 2,5
3 4 150 600 22500 16 141,2 8,8
4 3 100 300 10000 9 104,3 -4,3
5 5 170 850 28900 25 178,0 -8,0
6 6 215 1290 46225 36 214,8 0,2
7 8 290 2320 84100 64 288,5 1,5
итого 29 1025 5530 197525 155 0,0

Выводы:

1. Решена задача парной регрессии методом наименьших квадратов.

2. Получены коэффициенты в линейном уравнении y=-6.127+36.824x и рассчитан возможный домашний вариант.

3. Результаты проверены с помощью ППП и линии тренда.

Задача 2.

По семи территория Уральского района за 1995 г. Изе6стны значения двух признаков (табл.2.1)

Таблица 2.1

район расходы на покупку продовольственных товаров в общих расходах, % у среднедневная заработная плата одного работающего, руб.,х
Удмуртская респ. 68,8 45,1
Свердловская обл. 61,2 59
Башкортостан 59,9 57,2
Челябинская обл. 56,7 61,8
Пермская обл. 55 58,8
Курганская обл. 54,3 47,2
Оренбургская обл. 49,3 55,2

Требуется определить параметры парной регрессии для следующих функции: линейной степенной показательной, равносторонней геперболы и параболы методом наименьших квадратов (МНК). Составить прогноз величины у для некоторого х например для х=1.1 (х) min. Дать графическую интерпретацию результатов, использовать ППП для решения статистических задач сделать выводы.

К исходным данным добавим ещё одну пару значений х,у, связанную с порядковым номером по журналу и количеством студентов в группе, по формулам:

x8=xmin+((xmax-xmin)/Nсум)*Ni

y8=ymin+((ymax-ymin)/Nсум)*Ni

где, Ni–порядковый номер по журналу, Nсум- количество студентов в группе, min, max– минимальная и максимальная величины х и у по таблице 2.1.

после этого составляем таблицу 2.2 и рассчитываем все параметры для решения системы уравнений:

na+b∑x =∑y (4)

a∑x+b∑(x^2) =∑(xy)

Рассчитываем коэффициенты линейного уравнения парной регрессии:

σx^2= (x^2)cp = (xcp)^2

b= (cp(y*x) –cp(y)*cp(x))/(σx^2) (5)

a= cp(y) –b*cp(x)

Таблица 2.2.Линейная регрессия y=a+bx

n y x yx y^x y-y^x
1 68,80 45,10 3102,88 2034,01 4733,44 61,65 7,15
2 61,20 59,00 3610,80 3481,00 3745,44 56,88 4,32
3 59,90 57,20 3426,28 3271,84 3588,01 57,49 2,41
4 56,70 61,80 3504,06 3819,24 3214,89 55,92 0,78
5 55,00 58,80 3234,00 3457,44 3025,00 56,95 -1,95
6 54,30 47,20 2562,96 2227,84 2948,49 60,93 -6,63
7 49,30 55,20 2721,36 3047,04 2430,49 58,18 -8,88
8 61,00 55,12 3362,32 3038,21 3721,00 58,21 2,79
итого 466,20 439,42 25524,66 24376,62 27406,76 x 0
среднее значение 58,28 54,93 3190,58 3047,08 3425,85 x x
σ² 29,87 30,05 х х х х х
σ 5,47 5,48 х х х х х

Коэффициенты линейного уравнения парной регрессии можно определить из двух систем уравнений с двумя переменными(4):

8a+439.42b=466.2

439.4a+24376.62 b=25524.66

В результате вычислений получаем значения коэффициентов:

b=-0.34 ,a=77.14

Получено уравнение парной регрессии для описания расходов на покупки товаров от средней зарплаты одного члена семьи

y^=77.14-0.34*x

Это уравнение показывает , что с увеличением среднедневной заработной платы на 1 руб. для расходов на покупку продовольственных товаров снижается на 34 коп.

Надежность полученных результатов оцениваем по ряду коэффициентов (корреляции, детерминации) и критерию Фишера, определяем среднюю ошибку аппроксимации.


Таблица 2.3

коэффициент корреляции коэффициент корреляции показывает , что связь между х и у умеренная, обратная
rxy=-0,344 rxy=b*(σx/σy)
коэффициент детерминации вариация результата на 11,9% объясняется ариацией фактора х
r²xy=0,119 r²=(-0,344)²=0,119

-1≤xy≤1 0≤r²xy≤1

полученное уравнение регрессии описывает исх. Параметры (х,у) с точностью 11,9%. Влияние прочих факторов оценивается в 88,9%
критерий Фишера Подставляя в уравнение регрессии фактические значения х, определяем расчетные значения у^х
Fфакт. =0,81 Fтабл. =5,99
найдем еличину средней ошибки аппроксимации
Fфакт. =(r²/1-r²)*(n-2) A=1/n(Ai)=1/n (|y-y^x|/y*100%)=(61,19/8)*100%=7,65%
в среднем расчетные значения отклоняются от фактических на 7,65%

Коэффициент Фишера показывает, что это уравнение не имеет экономического смысла, так как Fфакт.< Fтабл.

Полученное значение Fфакт. Указывает на необходимость принять нулевую гипотезу о случайной природу выявленной зависимости и статистической незначимости параметров уравнения и показателей тесноты связи.

Графическое представление полученных результатов показано на рис. 2.1.

Рис.2.1

Из рисунка 2.1. видно, что исходные статистические данные достаточно разборосаны, т.е. явной закономерности не прослеживается.

Результаты вычислений по исходным данным, представлены в таблице 2.1 , полностью совпадают с уже полученным уравнением регрессии.

Таблица 2.4

-0,34337 77,13555
0,382134 21,09393
0,118608 5,924707
0,807417 6
8,34207 210,6129

Выводы:

1. Решена задача парной регрессии методом наименьших квадратов.

2. Низкая достоверность результатов объясняется рядом причин:

- собрано малое количество статистических данных, выбраны случайные районы за небольшой отрезок времени;

- в учебных целях добавлены случайные точки, зависящие от порядкового номера студента и числа студентов в группе;

- расходы на покупку продовольственных товаров в общих расходах зависят от ряда факторов: количества членов семьи, иждивенцев, налогов и др., т.е. реально существует более сложная зависимость, чем парная регрессия от ряда экономических факторов.

3. Разобрана учебная задача не имеющая практического приложения.

Задача 3.

На основании исходных данных о реальном ВВП в мире в целом, регионах и странах с 1990 г. По 2000г., представленных в таблице 3.1 провести экономический анализ. Выбрать для сравнения две страны, с помощью ППП получить аналитические зависимости, описывающие ВВП в выбранных стран, по этим уравнениям построить прогноз их развития в 2001-2020 годах, результаты сравнить с официальными опубликованными данными.

Таблица 3.1.Реальный ВВП в странах (млрд.долл. в ППС 1993 г.)

регионы страны 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
США 5971,1 5935,5 6071,8 6260 6516,7 6725,2 6833 7024,3 7199,9 7379,9 7564,4
Германия 1466,5 1487 1519,7 1503 1546,6 1596,1 1648,8 1690 1732,3 1775,6 1820
Китай 1798,5 1946 2000,9 2502,4 2802,7 3130,6 3496,9 3846,6 4231,2 4654,4 5119,8
Россия 993,2 943,5 804,5 735,2 656 626 588 600 622,1 643,9 666,4

На рис. 3.1 показано графическое изменение ВВП по ряду стран из таблицы 3.1. Их можно сравнивать между собой, определять тенденцию развития. Темпы развития за этот сравнительно небольшой промежуток времени отличаются по странам, вплоть до падения. Так, например, Россия пережила сложный период перехода к рыночной экономике, что привело к уменьшению её ВВП.

Рис.

Сравнивая темпы роста ВП США и Китая, можно говорить о выравнивании ВВП некотором году при условии их сохранения. По исходным данным табилы3.1, можно построить линейные и логарифмические аппроксимации и графические прогнозы. На рис. 3.2 а.б приведены аппроксимирующие уравнения. Так как достоверность аппроксимации R2 практически одинакова у линейных и логарифмических функций, то аналитический ответ рассчитываем по линейным функциям, приравнивая их и определяя год совпадения ВП :

172,49х-337441=341,03х-677130

(341,03-172,49)х=677130-337441

х=2015,48

Т.е., при сохранении темпов роста в США и Китае ВВП этих стран сравняется к середине 2015 года.

Рис. 1

Рис. 2


Выводы

1. Развитие экономических процессов происходит о времени, поэтому многие эконометрические задачи моделируются одномерными временными рядами. Эти задачи имеют большое преимущество – они двумерные, т.е. моделируются на плоскости и исходные статистические данные можно представить графически.

2. Результаты получаются с помощью ППП и по коэффициенту аппроксимации R² выбирается наиболее достоверная аналитическая зависимость.

3. Эконометрическое моделирование временных рядов позволяет анализировать имеющиеся статистические данные в различных областях человеческой деятельности – от ВВП до добычи нефти по странам и регионам. В ряде случаев возможно составлять прогнозы на будущее, изучать динамику экономических процессов в микро- и макропроцессах.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита08:40:06 04 ноября 2021
.
.08:40:03 04 ноября 2021
.
.08:40:00 04 ноября 2021
.
.08:39:58 04 ноября 2021
.
.08:39:50 04 ноября 2021

Смотреть все комментарии (16)
Работы, похожие на Контрольная работа: Эконометрическое моделирование временных рядов

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(294402)
Комментарии (4230)
Copyright © 2005 - 2024 BestReferat.ru / реклама на сайте