Задаем пленочный испаритель ИП-1 со следующими параметрами:
Нагревание проводится водой с , .
Конструктивные параметры теплообменника: поверхность теплообмена . , , , , вес = 230
кг
, материал – нержавеющая сталь.
Производительность (по отгону паров эфира) – 24,34кг/час
.
Тепловой баланс пленочного испарителя.
Теплоноситель – горячая вода.
Температура горячей воды на входе – 800
С
, на выходе – 400
С
.
Энтальпия питательной воды: на входе при 
на выходе при 
КПД установки .
Нагреваемая среда – эфирный раствор с диэтиловым эфиром.
Температура эфирного раствора: на входе –
на выходе – 
Расход эфирного раствора – ; расход эфира при испарении: .
Удельная теплоемкость эфирного раствора рассчитывается по формуле:
.
Температурный профиль процесса представлен на рис.1.

Рис 1. График изменения температуры по площади пленочного испарителя.
Т.о., по имеющимся данным составляем тепловой баланс процесса:
, отсюда: .

Из выражения теплового баланса получаем значение расхода горячей воды:

По полученному значению массового расхода определяем скорость потока воды:

Рассчитываем поверхность теплообмена: , где:
- тепловой эффект пленочного испарителя, рассчитываем по упрощенной формуле: 
- берем из справочника [1], ккал/кг
- по данным материального баланса, кг
, где:
- коэффициент теплоотдачи жидкости.
Критерий Рейнольдса для потока воды:
, где:
- скорость потока воды в межтрубном пространстве,
- эквивалентный диаметр;
- плотность воды;
- динамическая вязкость воды;
По известному значению критерия Рейнольдса определяем критерий Прандтля и критерий Нуссельта:
, где: 
.
Отсюда находим коэффициент теплоотдачи от горячей воды к стенке α1
:

- по справочнику [1],
Коэффициент теплоотдачи от пленки к стенке α2
находим по упрощенной формуле для пленочного испарителя:
,

Таким образом, выбранный стандартный теплообменник подходит для данного процесса.
Число труб пленочного аппарата находим по упрощенной формуле:
.
Расчет теплообменника для конденсации паров эфира.
Охлаждение проводится рассолом с , .
Поверхность теплообмена . , , , , вес = 213
кг
, материал – нержавеющая сталь.
Производительность (по отгону паров эфира) – 24,34кг/час
.
Скорость паров ДЭЭ в трубном пространстве:
Забиваем Сайты В ТОП КУВАЛДОЙ - Уникальные возможности от SeoHammer
Каждая ссылка анализируется по трем пакетам оценки: SEO, Трафик и SMM.
SeoHammer делает продвижение сайта прозрачным и простым занятием.
Ссылки, вечные ссылки, статьи, упоминания, пресс-релизы - используйте по максимуму потенциал SeoHammer для продвижения вашего сайта.
Что умеет делать SeoHammer
— Продвижение в один клик, интеллектуальный подбор запросов, покупка самых лучших ссылок с высокой степенью качества у лучших бирж ссылок.
— Регулярная проверка качества ссылок по более чем 100 показателям и ежедневный пересчет показателей качества проекта.
— Все известные форматы ссылок: арендные ссылки, вечные ссылки, публикации (упоминания, мнения, отзывы, статьи, пресс-релизы).
— SeoHammer покажет, где рост или падение, а также запросы, на которые нужно обратить внимание.
SeoHammer еще предоставляет технологию Буст, она ускоряет продвижение в десятки раз,
а первые результаты появляются уже в течение первых 7 дней.
Зарегистрироваться и Начать продвижение


Критерий Рейнольдса для паров диэтилового эфира:
, где:
- скорость паров ДЭЭ в трубах,
- внутренний диаметр труб;
- плотность паров ДЭЭ;
- динамическая вязкость ДЭЭ;
По номограмме5 определяем критерий Прандтля:

.
Отсюда находим коэффициент теплоотдачи от паров ДЭЭ к стенке α2
:
, где: - по справочнику [1],
,

Обозначим выражение за «а
», выражение за «b
».
, .
Пусть ,
пусть ,
пусть .

Определяем по графику ( ).
Находим действительное значение коэффициента теплопередачи:

Рассчитываем поверхность теплообмена: , где:
- тепловой эффект теплообменника, рассчитываем по упрощенной формуле: 
- берем из справочника [1],
- по данным материального баланса, кг

<4м2
.
Следовательно, выбранный стандартный теплообменник подходит для проведения данного технологического процесса.
Тепловой баланс.
Определим количество тепла (холода), необходимое для проведения процесса.
Основной аппарат – реактор синтеза ААУЭ Р-2 ( ).
,
- тепло, необходимое для нагревания реакц. массы, ккал
;
, где: ,
- тепло, необходимое для нагревания аппарата, ккал
;
, где: ,
- тепловой эффект физического процесса, ккал
;
, где: .
- тепловой эффект химической реакции, ккал
; .
- потери тепла в окружающую среду, ккал
;


Реактор выпарки ацетона Р-3. Температура проведения процесса .
Тепло, которое пошло на нагревание:
,
, где: ,
, где: ,
, где: .

.
Тепло, которое пошло на охлаждение (с 550
С
до 300
С
):
, где:
, где:
, где:
,

, где: ,
,
Реактор вакуумной перегонки технического ААУЭ Р-6 ( ).
,
, где: ,
, где: ,
, где:
,
, 
,
.
Тепловой баланс испарителя эфира ИП-1:
,
, где: ,
, где: ,
, где: ,
,
.
Энергетический расчет.
1. Расход водяного пара на нагрев аппаратов.
На нагрев реактора синтеза ААУЭ (Р-2) расходуется пара:
.
На нагрев реактора выпарки ацетона (Р-3) расходуется пара:
.
На нагрев реактора вакуумной перегонки технического ААУЭ (Р-6) расходуется пара: .
На нагрев пленочного испарителя (ИП-1) расходуется пара:
.
Общий расход пара: .
2. Расход охлаждающих агентов.
Рассчитаем расход воды на охлаждение реакционной массы в реакторе выпарки ацетона Р-3 после выпарки ацетона:
,
Расход воды на теплообменник Т1: .
Расход воды на теплообменник Т2: .
Расход воды на теплообменник Т4: .
Общий расход воды на охлаждение: .
3. Расход электроэнергии:
· На работу электродвигателей;
Определение мощности, потребляемой мешалкой.
Рассчитываем мощность, потребляемую мешалкой для реактора получения раствора хлорацетона Р-1. Для этого вначале определяем центробежный критерий Рейнольдса:
Сервис онлайн-записи на собственном Telegram-боте
Попробуйте сервис онлайн-записи VisitTime на основе вашего собственного Telegram-бота:
— Разгрузит мастера, специалиста или компанию;
— Позволит гибко управлять расписанием и загрузкой;
— Разошлет оповещения о новых услугах или акциях;
— Позволит принять оплату на карту/кошелек/счет;
— Позволит записываться на групповые и персональные посещения;
— Поможет получить от клиента отзывы о визите к вам;
— Включает в себя сервис чаевых.
Для новых пользователей первый месяц бесплатно.
Зарегистрироваться в сервисе
.
Режим переходный, поэтому мощность, потребляемую мешалкой, определяем по ф-е: , где:
- критерий мощности, задается исходя из значения отношения . Подбираем якорную мешалку. Для якорной мешалки при значение .
- плотность перемешиваемой среды (из расчетов техн. оборудования);
и - число оборотов мешалки в секунду, и диаметр мешалки, м
соотв. (из расчетов технологического оборудования).
Потребляемая мощность двигателя:
.
Расход электроэнергии: .
Определяем коэффициент С
для реактора Р-1:
.
На основании коэффициента С
рассчитываем потребляемую мощность двигателей в реакторах Р-2, Р-3, Р-4, Р-5 и Р-6.
Реактор Р-2 для синтеза ААУЭ:
, .
Реактор Р-3 для выпарки ацетона:
, .
Реактор Р-4 для промывки водой и разделения реакционной смеси:
, .
Реактор Р-5 сушки:
, .
Реактор Р-6 для вакуумной перегонки:
, .
Итого электрической энергии на перемешивание:

4. Расчет азота.
· На передавливание реакционной массы:
Для реактора синтеза ААУЭ (Р-2): , где:
.
Для реактора выпарки ацетона (Р-3): .
Для реактора промывки и разделения (Р-4) не требуется передавливание реакционной массы.
Для реактора сушки Р-5: .
Для сборника Сб-7 эфирного раствора: .
Общий расход азота на передавливание в производстве ААУЭ:
или 568,1кг
азота.
На фильтрацию принимаем расход азота: ,
Суммарный расход азота: .
Объем баллона с азотом .
Расход азота .
Литература.
К.Ф. Павлов, П.Г. Романков, А.А. Носков. Примеры и задачи по курсу процессов и аппаратов химической технологии. Л.; «Химия», 575с.
|