Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Курсовая работа: Расчет схемы для модели САУ на ЭВМ

Название: Расчет схемы для модели САУ на ЭВМ
Раздел: Рефераты по информатике
Тип: курсовая работа Добавлен 21:55:54 06 декабря 2009 Похожие работы
Просмотров: 10 Комментариев: 20 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно     Скачать

Министерство образования и науки РФ

Омский Государственный Технический Университет

Кафедра ИВТ

КУРСОВАЯ РАБОТА

по дисциплине: Основы теории управления

Выполнил:

Проверил: доцент Юдин В.А.

Омск 2006г.

Оглавление:

1. Техническое задание по заданной структурной схеме САУ

2. Выполнение технического задания

3. Список литературы

Техническое задание:

Структурная схема САУ

Исходные коэффициенты:

k4 и T3 выбрать из минимума интегральной оценки.

По заданной структурной схеме САУ найти:

1. Передаточную функцию разомкнутой системы W(p);

2. Передаточную функцию замкнутой системы Ф(p);

3. Передаточную функцию ошибки Wx (p);

4. Дифференциальное уравнение замкнутой системы;

5. Характеристическое уравнение замкнутой системы;

6. Дифференциальное уравнение ошибки;

7. Найти первые два коэффициента ошибки С0 , С1

8. Пользуясь структурным методом моделирования, составить схему для модели САУ на ЭВМ и рассчитать коэффициенты модели.

9. Выбрать параметры корректирующего устройства обеспечивающей минимум интегральной оценки и построить переходный процесс для выборных параметров.


Выполнение технического задания:

1. Передаточная функция разомкнутой системы:

,где

2. Передаточная функция замкнутой системы:

3. Передаточная функция ошибки:

4. Дифференциальное уравнение замкнутой системы:

5. Характеристическое уравнение замкнутой системы:

Для получения характеристического уравнения замкнутой системы, необходимо сложить числитель и знаменатель передаточной функции разомкнутой системы и приравнять к нулю.

6. Дифференциальное уравнение ошибки:

7. Первые два коэффициента ошибки с0 и с1 :


8) Составим по заданной структурной схеме САУ схему для моделирования на ЭВМ в программе MC 2.

1. Элемент сравнения сигнала может быть представлен в виде:

x1 R1
R3

-x2 R2 -x3

Значения R1 ,R2 ,R3 будут равны 1 МОм.

2. Для реализации коэффициента усиления k1 =10, используем масштабный операционный усилитель:

R2

x1 R1 x2

Значение R1 задается равным 1 МОм, тогда R2 =k1 R1 =10 МОм.

3. Модель инерционного звена:

С

R2

R1

Для первого инерционного звена задаем значение R1 =1 МОм, тогда R2 =k2 R1 =2 МОм. С=T1 /R2 =0,1/2=0,05 мкФ.

Для второго инерционного звена задаем значение R1 =1 МОм, тогда R2 =k3 R1 =0,1 МОм. С=T2 /R2 =0,15/0,1=1,5 мкФ.

4. Корректирующее устройство представлено реально-дифференцирующим звеном:

R0

x1 R1

R2 -x2

1МОм 1мкФ

1 МОм 1 МОм

Задаем R0 =1 МОм, тогда R1 =T3 /k4 =0,12/2=0,06 МОм, R2 =T3 =0,12 МОм. Здесь коэффициенты T3 и k4 будут выбраны позже из минимума интегральной оценки.

5.Идеальное интегрирующее звено:

C

R

Задаем значение R=1 МОм, тогда C=1/k5 R=1/10=0,1 мкФ.

С учетом полученных расчетов схема для моделирования САУ на ЭВМ имеет вид:

9) Интегральная оценка. Переходный процесс.

Выберем параметры корректирующих устройств исходя из минимума интегральной оценки, выберем минимальное значение τ и для него построим график зависимости k=I(τ), выберем минимальное значение Т. Установим полученные значения параметров реального дифференцирующего звена. Найденные параметры будут отвечать минимуму интегральной оценки.

k I(k)
1 0,187
1,5 0,163
2 0,157
2,5 0,158
3 0,162
3,5 0,168
4 0,175


Функция I(k) принимает минимальное значение при k=2.

Переходный процесс для системы с параметрами корректирующих устройств, удовлетворяющих минимуму интегральной оценки:


Список литературы:

1. Бесекерский В. А.Теория систем автоматического регулирования./ Бесекерский В. А., Попов Е П. - М.: Изд-во «Наука», 1976. -769с.

2. Анисимов В. И. Сборник примеров и задач по линейной теории автоматического регулирования./ Анисимов В. И., Вавилов А. А., Фатеев А.В. - М.: Госэнергоиздат, 1959. -114с

3. Фадеев А. И. Метод, указание по дисциплине «Основы теории управления»./ Фадеев А. И., Феигина Е. М., Юдин В. А. - Омск: Изд-во ОмГТУ,1995. -25с.

4. Мерриэм К. Теория оптимизации и расчет систем управления с обратной связью./ Мерриэм К. М.: Изд-во «Мир»,1967. -23бс.

5. Зевке Г. В. Основы теории цепей: Учебник для вузов/Зевке Г. В.,ИонкинП. А.,Нетушил А. В., Страхов С. В. -М.: Энергоатомиздат,19В9. -528с.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита16:00:51 03 ноября 2021
.
.16:00:47 03 ноября 2021
.
.16:00:33 03 ноября 2021
.
.16:00:22 03 ноября 2021
.
.16:00:18 03 ноября 2021

Смотреть все комментарии (20)
Работы, похожие на Курсовая работа: Расчет схемы для модели САУ на ЭВМ

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(294402)
Комментарии (4230)
Copyright © 2005 - 2024 BestReferat.ru / реклама на сайте