Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Ненасыщенные альдегиды и кетоны

Название: Ненасыщенные альдегиды и кетоны
Раздел: Рефераты по химии
Тип: реферат Добавлен 14:04:05 21 июня 2010 Похожие работы
Просмотров: 390 Комментариев: 20 Оценило: 3 человек Средний балл: 5 Оценка: неизвестно     Скачать

Ненасыщенные альдегиды и кетоны

Ненасыщенные альдегиды и кетоны, в зависимости от взаимного расположения двойной и карбонильной групп в молекуле, могут быть поделены на три группы: с сопряженными (CH=CH2 -COCH3 - метилвинилкетон, бутен-1-3-он; CH2 =CHCHO - акролеин, пропеналь), кумулированными (кетены CH2 =C=O) и изолированными (CH2 =CHCH2 CH2 CH2 COCH3 ) связями. Из них наибольший интерес представляют соединения с сопряженными связями, особенно - акролеин и кротоновый альдегид

Для некоторых ненасыщенных альдегидов и кетонов сохранились эмпирические (акролеин) или рациональные (метилвинилкетон) названия. По номенклатуре IUPAC положение двойной связи и карбонильной группы указывают цифрами.

Важнейшими представителями ненасыщенных альдегидов являются акролеин CH2 =CH-CHO и кротоновый альдегид CH3 -CH=CH-CHO.

Существует несколько способов получения акролеина:

1. Альдольная конденсация формальдегида с ацетальдегидом

CH2 =O + CH3 -CHO ® CH2 OH-CH2 -CHO

оксипропионовый альдегид

Оксипропионовый альдегид далее подвергается дегидратации:

CH2 OH-CH2 -CHO ® CH2 =CH-CHO + H2 O

2. Прямое каталитическое окисление пропилена

CH2 =CH-CH3 + O2 ® CH2 =CH-CHO + H2 O


3. Дегидратация глицерина

CH2 OH-CHOH-CH2 OH ® CH2 OH-CH=CHOH « CH2 OH-CH2 -CH=O ® CH2 =CH-CHO

Акролеин используется для получения пластмасс, отличающихся большой твердостью. При конденсации акролеина с пентаэритритом получают полимеры, по внешнему виду напоминающие стекло. Акролеин используют в качестве исходного вещества для синтеза глицерина.

Кротоновый альдегид получают кротоновой конденсацией ацетальдегида (см. Лекция №24). Применяется для получения масляного альдегида, бутанола, масляной кислоты, а также малеинового ангидрида.

Химические свойства

Акролеину, кротоновому альдегиду и другим непредельным соединениям с сопряженной двойной и карбонильными связями присущи реакции, свойственные алкенам и альдегидам. Взаимное влияние двойной связи и карбонильной группы находит отражение в некоторых особенностях, например:

1. Порядок присоединения HBr не соответствует правилу Марковникова


2. Синильная кислота присоединяется к акролеину по карбонильной группе:

3. Гидросульфит натрия присоединяется не только по карбонильной группе, но и по двойной связи:

Метилвинилкетон - простейший представитель ненасыщенных кетонов. Существует в виде двух изомеров:

Метилвинилкетон получают преимущественно двумя способами:

1. Гидратация винилацетилена.

HCºC-CH=CH2 + H2 O ® CH3 COCH=CH2

2. Конденсация формальдегида с ацетоном:

H2 C=O + CH3 COCH3 ® HOCH2 CH2 COCH3 ® CH2 =CHCOCH3

Метилвинилкетон проявляет свойства как кетона, так и алкенов. Легко полимеризуется в прозрачную бесцветную стекловидную массу, используемую в производстве пластмасс.

Кетенами называются соединения, содержащие группу >C=C=O. По строению они напоминают непредельные кетоны. Простейший кетен CH2 =C=O может быть получен из бромангидрида бромуксусной кислоты под действием цинковой пыли:

CH2 BrCOBr + Zn ® CH2 =C=O + ZnBr2

В промышленности кетен получают пиролизом ацетона

CH3 COCH3 ® CH2 =C=O + CH4

и дегидратацией уксусной кислоты в присутствии катализаторов кислотного типа:

CH3 COOH ® CH2 =C=O + H2 O

CH3 COOH + H+ ® CH3COO+ H2 ® CH3 C+ =O ® CH2 =C=O + H+

Кетены чрезвычайно легко реагируют с водой:

CH2 =C=O + H2 O ® CH3 COOH

карбоновыми кислотами:

CH2 =C=O + CH3 COOH ® (CH3 CO)2 O.

Спиртами:

CH2 =C=O + CH3 CH2 OH ® CH3 COOCH2 CH3 .

Аминами:

CH2 =C=O + CH3 NH2 ® CH3 CONHCH3 + H2 O.

В промышленности из кетена получают уксусную кислоту, уксусный ангидрид, этилацетат, дикетен и другие вещества, являющиеся полупродуктами в производстве красителей и лекарственных веществ.

Кетен легко полимеризуется с образованием дикетена:

.

Дикетен реагирует с водой, спиртами, аминами:

CH2 =COCH2 CO + H2 O ® CH3 COCH2 COOH.

Ароматические альдегиды и кетоны

Ароматические альдегиды и кетоны характеризуются наличием карбонильной группы, связанной с углеродом бензольного ядра или боковой цепи. Альдегиды с карбонильной группой первого типа называются по соответствующим ароматическим кислотам, а с карбонильной группой в боковой цепи – как арилзамещенные альдегиды жирного ряда.

Кетоны бывают чисто ароматические (дифенилкетон или бензофенон) и жирноароматическими (метилфенилкетон или ацетофенон).

Способы получения ароматических альдегидов

Многие ароматические альдегиды могут быть получены способам, описанными для альдегидов жирного ряда (Лекция№23): окисление первичных спиртов, сухая перегонка кальциевых солей ароматической и муравьиной кислот, синтезы с участием реактивов Гриньяра и др.

1. Окисление ароматических углеводородов.

Важный способ синтеза ароматических альдегидов (в частности, бензальдегида) – окисление углеводородов кислородом воздуха на катализаторе (V2 O5 , MnO2 ):

C6 H5 -CH3 ® C6 H5 -CHO

Способ имеет как лабораторное, так и промышленное значение.

2. Формилирование ароматических углеводородов.

Для ароматического ряда известны реакции прямого введения альдегидной группы, не имеющие аналогий в жирном ряду (реакция Гаттермана-Коха):

C6 H5 CH3 + HCl+CO ® CH3 -C6 H4 -CHO

Реакция катализируется хлоридами меди и алюминия. Предполагается, что в качестве промежуточного продукта образуется хлористый формил HCOCl, не существующий в свободном виде. Бензол в эту реакцию вступает очень плохо, его гомологи дают хорошие выходы (50-60%).

3. Гидролиз гем-дигалогенпроизводных.

Существует способ получения бензальдегида через хлористый бензилиден C6 H5 CHCl2 :

C6 H5 CH3 + Cl2 ® C6 H5 CHCl2 + H2 O ® C6 H5 CHO + 2 HCl

толуол хлористый бензилиден бензальдегид

Гидролиз проводится в присутствии катализатора (Fe).

Способы получения ароматических кетонов

Для получения ароматических кетонов применимы многие методы получения кетонов жирного ряда (окисление вторичных спиртов, перегонка кальциевых солей ароматической и какой-либо другой кислоты, кроме муравьиной - см. Лекцию №23).

Реакция Фриделя-Крафтса. В качестве исходных веществ могут использоваться ароматические углеводороды, эфиры фенолов:

C6 H6 + Cl-CO-C6 H5 ® C6 H5 -CO-C6 H5 + HCl

хлористый бензоил бензофенон

Реакция катализируется хлористым алюминием.

Химические свойства ароматических альдегидов

Ароматические альдегиды вступают в большинство реакций, свойственных альдегидам жирного ряда. Специфическими реакциями ароматических альдегидов являются следующие:

1. Реакция Канниццаро.

В присутствии водного или спиртового раствора щелочи (50%) ароматические альдегиды могут диспропорционировать, образуя соответствующий спирт и соль кислоты (реакция Канниццаро):

2 C6 H5 CHO + KOH ® C6 H5 COOK + C6 H5 CH2 OH

бензальдегид бензоат калия бензиловый спирт

Большинство альдегидов жирного ряда в условиях реакции Канниццаро подвергаются осмолению, однако, если в альдегиде отсутствует атом водорода в a-положении, то реакция протекает вполне гладко. Механизм реакции следующий:

2. Бензоиновая конденсация. Под действием цианид-иона две молекулы ароматического альдегида могут конденсироваться с образованием a-оксикетона. Поскольку простейшее соединение, образующееся при конденсации бензальдегида, называется бензоином, эта последовательность реакций получила название бензоиновой конденсации:

Реакционная способность ароматических альдегидов и кетонов зависит от заместителей в ароматическом ядре. Так, наличие электроноакцепторных групп (NO2 -) повышает реакционную способность по карбонильной группе. Большое значение имеет также пространственный фактор: заместитель (трет-С4 H9 -, SO3 H-) в орто-положении ароматического ядра снижает реакционную способность.

Большинство ароматических кетонов реагируют с гидроксиламином и производными гидразина по обычной схеме:

(Ar)2 C=O + NH2 OH ® (Ar)2 C=NOH + H2 O

кетоксим

(Ar)2 C=O + NH2 -NH-C6 H5 ® (Ar)2 C=N-NH-C6 H5 + H2 O

фенилгидразон

Из всех азотистых производных кетонов наибольший интерес представляют оксимы. Оксимы чисто ароматических несимметричных кетонов существуют в виде двух геометрических изомерных форм, син- и анти-:

Из всех азотистых производных кетонов наибольший интерес представляют оксимы. Оксимы чисто ароматических несимметричных кетонов существуют в виде двух геометрических изомерных форм, син- и анти-. Син-формой принято считать изомер, содержащий меньший радикал в цис-положении с гидроксильной группой оксима. Более стойкой является анти-форма. Она получается из син-формы под действием кислот. Аналогичное явление известно и для оксимов ароматических альдегидов:

Оксимы жирноароматических кетонов обычно существуют в виде одной более стойкой формы. Важным свойством оксимов является их способность подвергаться перегруппировке Бекмана: под действием ангидридов и хлорангидридов кислот два изомерных оксима дают два изомерных амида:

перегруппировка Бекмана используется для получения w- и e-аминокислот.

Реакция замещения галогена на ОН-группу протекает по механизму нуклеофильного замещения SN . В зависимости от строения субстрата замещение протекает по SN 1 (мономолекулярное замещение):

или SN 2 (бимолекулярное):

Атакующий агент – анионы (SH - , OН - , I - , Br - , С l - , F - , RO - , CH3 COO - , ONO2 - ) или молекула (ROH, HOH, NH3 , RNH2 ). По увеличению реакционной способности анионы располагаются в следующий ряд:

HS - , RS - > I - > Br - > RO - > Cl - > CH3 COO - > ONO2 -

Анионы более сильные нуклеофилы, чем сопряженные кислоты:

OH - > HOH, RS - > RSH, RO - > ROH, Cl - >HCl

Нуклеофил – атом (или частица), который может отдать пару электронов любому элементу, кроме водорода. Механизм бимолекулярного нуклеофильного замещения (SN 2 ) включает образование промежуточного комплекса.

Представленная реакция является реакцией замещения, так как нуклеофил (ОН - ) вытесняет уходящую группу (I- ).

Механизм мономолекулярного нуклеофильного замещения (SN 1 ) состоит из двух стадий:

Реакции замещения по механизму SN 1 в тех случаях, когда образуется стабильный катион. Первичные галогеналканы реагируют по механизму SN 2 , а третичные - по механизму SN 1.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита06:16:09 04 ноября 2021
.
.06:16:07 04 ноября 2021
.
.06:16:05 04 ноября 2021
.
.06:16:01 04 ноября 2021
.
.06:15:58 04 ноября 2021

Смотреть все комментарии (20)
Работы, похожие на Реферат: Ненасыщенные альдегиды и кетоны

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(294399)
Комментарии (4230)
Copyright © 2005 - 2024 BestReferat.ru / реклама на сайте